
The Integration of Trusted Platform Modules into a

Tactical Identity Management System

Anders Fongen and Federico Mancini

Norwegian Defence Research Establishment (FFI)

Emails: {anders.fongen,federico.mancini}@ffi.no

Abstract—The use of integrity protection mechanisms from a
tactical Identity Management (IdM) system is the focus of this
paper. While traditional identity management systems supports
authentication, and some also access control, there is still a
need for attestation of platform integrity. The proposed solution
employs the Trusted Platform Module (TPM) hardware unit to
secure the integrity of the software configuration, and to provide
cryptographic proof to the IdM system for subsequent attestation
of the system’s integrity. The communicating parties may elevate
their mutual trust on the basis of this attestation.

I. INTRODUCTION

Identity Management (IdM) should support authentication,
access control and integrity protection. Through attestation
issued by a Trusted Third Party (TTP) the subjects can enter
into transactions without the need for direct trust relations.

The Public Key Infrastructure (based on the PKIX rec-
ommendations [4]) issues attestation of public keys and sup-
ports different authentication operations, but its design has
been criticized for its weak scalability, poor interoperability,
inadequate data structures and inflexible trust model: The
revocation model generates much traffic and hinders cross
domain operation, the X.509 certificate has a myriad of exten-
sions and validation models, public keys and subject attributes
cannot have different lifetimes, and cross-domain operation is
inflexible and overly complicated at the same time.

The Single Sign On (SSO) approach, which may be offered
through lightweight models like SAML SSO Profile[1], also
employs a TTP based attestation model. However, few of these
lightweight models offer mutual authentication, only the client
is usually authenticated. Mutual authentication should be a
requirement as phishing attacks are so common on the World
Wide Web.

In order to overcome these limitations and to study identity
management, authentication and access control in tactical
network environments, the Gismo IdM was developed. It offers
mutual authentication, cross domain operation, access control
support, scalable operation, short lived credentials and efficient
protocols [2].

This paper will investigate another aspect of trust in identity
management systems, namely the integrity of the software
configuration in the communicating parties.

When using public key cryptography and certificates, it is
essential that the private key residing on the user’s host is not
compromised or misused. For most signature and decryption
operations with key pairs, the private key will be loaded into

user memory and used for cryptographic operations. There are
two risks related to these operations:

1) The private key may leak outside the controlling
process and be misused by unauthorized parties to
generate signatures on the owner’s behalf.

2) Hostile program code (aka malware) may intercept
the cryptographic process and, e.g., change the con-
tent of the data which is to be signed.

Risk no. 1 may be mitigated through the use of smart cards
which encapsulate the private key and offer an interface to the
cryptographic operations. Thus, the private key never leaves the
smart card and is consequently less exposed to compromise.

Risk no. 2 is sometimes mitigated through strong sepa-
ration of activities, as found in Multi Level Security (MLS)
systems, sometimes through anti-malware software (sometimes
called virus protection). It can also be mitigated through a
sealing process, where an approved software configuration is
verified during system operation, e.g. the bootstrap.

In the presented approach the Trusted Platform Module
(TPM) is employed, which is a hardware crypto module widely
deployed in most laptop and desktop computers, and which
is able to mitigate both risks. It offers a hardware-protected
storage for private keys and a shielded environment for crypto-
graphic operations similar to a smartcard. Unlike a smartcard,
it is integrated with the platform and is therefore able to offer
a mechanism through which the software configuration can be
verified during bootstrap. It also offers the connection of the
two services so that keys can only be used on systems which
have passed their bootstrap verification process.

The contribution of this paper is the extension of tac-
tical IdM systems to include support of TPM-based platform
integrity verification in a mobile tactical environment and to
issue attestation of a successful verification.

The attests may be used during subsequent authentication
and access control by a relying party which benefits from the
improved security state. This allows the distinction between
trusted users and trusted platforms and may bind the identity
of a user to that of the trusted platform at authentication
time. In this case, temporary TPM generated keys are used to
protect the actual communication and user personal keys are
not exposed to any other than the TTP, unlike what happens
in [2]. The details of the protocol will be explained during the
course of the paper.

The remainder of the paper is organized as follows: In
Section II a description of the services offered by the TPM chip
will be given. Section III describes the Gismo IdM. Section IV



discusses the detailed mechanisms during attestation of TPM
keys. Section V presents a small number of related questions
regarding our research efforts. Finally, Section VI presents
research related to our project, and Section VII concludes the
manuscript and outlines further research on this matter.

II. TRUSTED PLATFORM MODULE

It is assumed that the reader has some knowledge of the
TPM design and is familiar with basic Trusted Computing
concepts. However, we will briefly review those relevant to
our work in order to define some terminology and notation
that will be used in the rest of the article.

The TPM contains several asymmetric key types which are
used for different purposes. The Endorsement key is created
during manufacturing and is never used to sign data, but only
to prove to a third party that a genuine TPM is involved in a
transaction. This is achieved by using the corresponding key
certificate, called Endorsement certificate which is (indirectly)
signed by well known Certificate Authority like Verisign Corp.
The endorsement key is denoted EK and the corresponding
certificate CertEK .

Out of privacy concerns, rather than using the EK in actual
transactions, the TPM will create another type of key to prove
its genuineness without compromising its identity. These are
called Attestation Identity keys, denoted AIK . These keys must
pass a certification process before they can be used, in order
to verify that they were actually generated by a genuine TPM.
The external certificate authority involved in this process is
called Privacy CA (PCA), which issues the AIK certificate,
CertAIK , to be used later when an AIK signature must be
verified. A description of the AIK certification process can
be found in [10].

Legacy keys, termed LK , can be created at any time and are
the only keys that can be used for both signing and encryption.
Legacy keys can be certified by the AIK to prove that they
are generated and protected by a TPM.

The attestation process consists in signing with an AIK
the values stored in the TPM Platform Configuration Registries
(PCRs), also called a Quote operation, and present them to
a third party to verify the platform status. When the PCRs
contain the measurements of the software involved in the boot
process, we talk about trusted boot. A key can also be bound
to specific PCR values, so that it can only be used when the
platform is in the defined configuration. This is different from
sealing, which binds encrypted data, not a key, to a specific
platform configuration.

There are more types of keys in the TPM, but they are not
relevant to the work presented in this paper.

In the following discussion we denote (Message)Key the
messages signed with the private part of a Key, and those
encrypted with the corresponding public part Key(Message).

III. GISMO IDM

The presence of an identity management system is essential
to TPM-enhanced security. The IdM will serve as a trusted
third party (TTP) and issue attests which are protected with
its digital signature.

CA

CA

IdP

IdP

client

service

client

service

Attribute
store

Attribute
store

Key store

PKI A

COI

COI

Fig. 1. The functional components of Gismo IdM. Observe that the IdP
serves one single COI. Key management is handled by the PKI whereas the
attribute management is done by the IdPs on the COI level.

For the efforts on establishing a proof-of-concept prototype
for attested use of a TPM, an existing IdM called “Gismo
IdM” has been employed. Gismo IdM was developed to study
the necessary properties for an IdM used in a multi-domain
wireless mobile network used by a coalition tactical force.[2]

In Gismo IdM, existing PKIs are kept for reasons of in-
vestment protection, but encapsulated by a number of Identity
Providers (IdP), each serving a “community of interest” (COI).
The members of a COI share the IdP’s public key as their
trust anchor. The IdP issues Identity Statements (IS) to attest
the public key and attributes of a subject. Information about
the approved software configuration of the subject’s computer
may be stored among the attributes. The IS is given a short
lifetime and sealed with the signature of the IdP. Due to the
short lifetime, no revocation arrangement is necessary.

The architectural overview of Gismo IdM is shown in
Figure 1. Observe that the COI members are never exposed
to PKIX protocols or data objects (X.509 certificates or revo-
cation lists). The key properties are explained in the following
paragraphs:

a) Authentication support: The IdP issues ISes which
bind the public key of a subject to its identity, analogous
to X.509 Certificates. Identity statements are issued to local
subjects registered in the IdP, as well as to subjects who can
display an IS issued by a different IdP to which this IdP has
a trust relationship.

The subjects (either client or server) authenticates them-
selves during the service invocation by the use of their identity
statements and their private keys. Different protocols have been
designed with the purpose of generating as little network traffic
and as few protocol round trips as possible.

b) Integrated access control: Included in the identity
statement is a set of attributes which describes properties of
the subject in the form of name-value pairs. The attributes



Validate cert
name

(asynchronous operation)

Client Xa IdPa PKIa IdPb Server Fb

(ISx)A

(ISx)A

(ISx)B+(ISb)A

(ISx)B + (Message+Nonce)Xa

(ISf )B + Xa(Response+Nonce)Fb

Fig. 2. Gismo IdM protocols for IS issue and service invocation

can describe roles of the subject and enter into access control
decisions based on the Role Based Access Control (RBAC)
or Attribute Based Access Control (ABAC) model. They can
also describe other properties of the subject, e.g., preferred
language, proficiency level etc. which are utilised during
service execution.

The attributes are sealed inside the identity statement with
the signature of the IdP, so they cannot be changed once issued.

c) Cross-COI operations: Clients can invoke services
in a different COI, provided that there exists a trust rela-
tionships between the two COIs. A client obtains an identity
statement from its IdP, then passes on that IS to the IdP of a
foreign COI. The foreign IdP can issue a guest IS containing
the same information, but signed by the foreign IdP. Since the
guest IS’s signature will be trusted by servers in the foreign
COI, it can be used to authenticate to these servers. Server
authentication requires a cross domain IS issued from one IdP
to the other, so a signature chain back to the client’s trust
anchor can be constructed. An example is given in Figure 2
which is to be interpreted as follows:

An Identity Statement ISx is issued and signed by the
IdPa with its key A to some user Xa after his certificate was
verified with the PKIa. IdPb gets its IS signed by IdPa as
a proof of mutual trust. Xa wants to use a service in the COI
of IdPb and asks for the guest IS (ISx)B , which is trusted
thanks to (ISb)A generated previously. Xa then authenticates
itself with the target service on server Fb. The request contains
the client guest IS and the message is signed with Xa private
key to protect its integrity. Replay is not considered as a threat
for this particular service. The response message contains the
server’s IS (ISf ) and is encrypted with Xa public key as a
part of the authentication scheme (not for confidentiality), and
signed by Fb to protect integrity. (ISb)A, which was issued
with the guest IS is necessary to validate the server’s IS. The
Nonce is uses to protect against response replay.

The IdP is not invoked for each service invocation. The
IS is cached with the subject for its lifetime and used in all
subsequent request or response messages. The IdP does not
need to be reachable all the time, only when a new IS is
needed. During a tactical operation, this has great advantages.
The IdP can be running on a computer in a vehicle, and the
soldiers can get fresh ISes prior to dismounting and use these
for several hours. For the same reason, the IdP is not an
attractive target for a DOS attack of short duration.

IV. TPM-ENHANCED IDENTITY MANAGEMENT

An identity statement can indicate if the computer in
use is TPM protected, which means: (1) That it has booted
with an approved software configurations, and (2) that the
operations which employs the private key take place inside
the TPM. Hence, using a TPM can significantly increase the
overall security of the system and strengthen the trust between
entities. This implies also that the IS, which is issued on
behalf of a subject (e.g., a person) now contains information
about the computer through which the subject is operating.
Consequently, the identity statement must be bound both to
the computer and the subject.

The IS issuing process for a TPM client in the IdM consists
of two different operations, as shown in detail in Figure 3:

1) AIK certification, which is done once by an adminis-
trator before the computer is deployed in the field.

2) LK certification, whereby a temporary Legacy Key is
attested by the IdP through an IS which binds the LK
to the identity of the user who currently operates the
computer.

Observe that it is the LK certification that results in an IS
that subsequently goes into the authentication process. Since a
computer is used by several users, the lifetime of the LK will
never be longer than the computing session owned by a user.
The new user will need a new LK and a new IS in order to
operate.

A. AIK certification

In Gismo IdM, public key certificates are issued and kept
within the PKI, not the IdM. The certificates are issued as a
part the subject’s enrollment process, and as a TPM-equipped
computer is entered into the equipment inventory its AIK
should be validated and certified by the PKI CA.

A newly generated AIK is sent together with CertEK and
a Quote of the 12 first PCRs to the PKI CA, encrypted with
the PKI CA public key. The AIK certification process now
takes the following steps:

1) CertEK is validated by following the certificate chain
to the root CA (Verisign) according to the outline
set by RFC3280.[4] (This is currently possible only
with Infineon TPM chips which are shipped with
Endorsment Certificates signed by Versign).

2) An AIK certificate is generated, in which the AIK is
bound to a subject name which is constructed from
the CertEK serial number and the PCR values. A
”handle” (random string) is hashed and the resulting
hashed value is associated with the certificate. Other
fields and extensions in the certificate are given stan-
dard values. The AIK certificate, CertAIK , is signed
by the CA and stored in the certificate repository.

3) What is returned to the client is not the AIK cer-
tificate, but the ”handle” with which it is associated.
This string is encrypted with EK, so that only the
TPM later can present this handle. Observe that the
handle cannot be constructed through inspection of
CertAIK due to the hash operation.



The AIK certification process is logically identical to the
standard request to a PCA.[10] The main difference is that
CertAIK is not returned to the client and that the Quote
operation usually done in a separate attestation process, is
now part of the AIK certification request. A more detailed
discussion is given in Section V.

B. Legacy key (LK) certification

Prior to invocation of services, the TPM-equipped com-
puter must obtain an IS which certifies an LK generated
by the TPM which will be used for authentication. The LK
represents a computer user, not the computer itself. In a multi-
user system, several LKs may exist and must be reserved to
one process/user and protected from use by other processes.

The certification of an LK is carried out by the IdP,
and results in an IS with the public part of LK and the
identity information from the computer user. The structure
of the LK certification request must be able to ensure: (1)
That the LK is made inside a genuine TPM, (2) that the
platform integrity is guaranteed to some extent, (3) that the
user requesting the IS is authentic and authorized. The first two
requirements are satisfied by using the TPM_CERTIFY_INFO
structure generated by the TPM when certifying a new key.
This structure contains, among other things, a digest of the LK
and the PCR values under which this specific key is allowed
to operate, all signed with the AIK. The third is satisfied by
binding user and LK by signing the request with the user’s
private key. The syntax of the request is as follows:

(SN,LK ,AikHandle, (LKdigest + LK{PCR})AIK , )s
(1)

which reads as follows: The digest of the LK together with
the PCR values specified at its creation are signed by the AIK
and concatenated with the ”handle” of the AIK certificate, so
that the IdP knows which CertAIK to fetch from the PKI
repository to verify the signature. The user’s subject name
(SN ) is bound to the LK through the user’s signature s and
the user’s certificate in the PKI.

This request structure is validated and the necessary trust
is established, after which the IdP issues an identity statement
with the following content:

(SN,LK ,Attr ,ValPer , IdpName)IdP (2)

The terms Attr means the subject’s attribute set, the term ValPer
refers to the validity period. The attribute set will contain
additional information that the IS relates to a TPM-assisted
operation and whether the PCR values are still the same as
those quoted in the pre-deployment phase. Except for these
extra attributes, the resulting identity statement are identical
for TPM-based and normal clients and are compatible with all
protocols presented in [2] and [3].

V. DISCUSSION OF THE PROPOSED SOLUTION

There are a number of other aspects on the integration of
TPM and IdM that will be discussed briefly in this section:

TPM Client/Server Xa

IdPa

PKIa

Client/Server Fb

User

P
R

E
-D

E
P

L
O

Y
M

E
N

T

(A
IK

 C
er

ti
fi

ca
ti

o
n
)

D
E

P
L

O
Y

E
D

(L
K

 C
er

ti
fi

ca
ti

o
n
)

Generate AIK

Return AIK, CertEK, (PK)AIK

Quote(PCR [1-12])

PK(CertEK,AIK,(PCR[1-12])AIK)(PCR [1-12])AIK

Verify CertEK

and create and store 

CertAIK with PRC[1-12],

indexed by a random and 

hashed AIK-Id
EK(AIK-Id)ActivateIdentity

Store AIK-Id

CertS

Generate LK{PCR[1-12]}

Certify LK with AIK

(SN,(LK)AIK,AIK-Id)s(LK)AIK Verify AIK, S and PCRs

Issue IS with LK

Use GismoIdM authentication protocol with LK

Install PKI public key PK (asynchronous)

Fig. 3. This Figure shows in detail the protocol for AIK and LK certification
explained in Sections IV-A and IV-B. In a pre-deployment phase an administra-
tor generates an AIK, quotes the PCRs from 1 to 12 ((PCR[1−12])AIK ),
and sends them together with the CertEK to the PKI encrypted with its
public key (PK). The CertEK is verified and an AIK certificate (CertAIK )
containing the PCR values is created and stored. Its identifier (AIK − Id)
is randomly generated and sent back encrypted with the EK to Xa, where
it is decrypted by calling the ActivateIdentity function on the TPM, and
stored. The same AIK − Id is also hashed and stored in CertAIK , so that
obtaining the certificate would not reveal it. Once deployed, some user logs
in with its certificate (CertS ) and a Legacy Key (LK) is generated to be
used only with the current PCR[1-12] (LK{PCR[1−12]}). The key is then
signed with the AIK and sent to the IdP with an IS request, together with
the user Subject Name (SN ), and the AIK−Id, all signed with the user key
S. Once the signatures and the PCR values are matched against those stored
on the PKI, the IS is issued and authentication continues as in Figure 2.

a) TPM, TSS and Java: Gismo IdM has been imple-
mented in Java, and it was therefore a natural choice to
implement also the TPM related code in the same language for
best compatibility. Fortunately, the JSR-321 [11] was recently
approved for a final release and provided us with a TSS (TPM
Software Stack) completely implemented in Java. However,
these libraries lack the support for some important TPM
features like AIK certification and legacy key creation and
use. We have therefore implemented those parts ourselves by
reusing parts of the jTSS libraries [5], upon which the JSR-
321 reference implementation is based. In particular, the AIK
certification part was the most tricky as there is no functioning
PCA around and the whole process is often only simulated
locally in available APIs.

The existing TPM protocols are mainly focused on privacy,
but if privacy is not a concern compared to other secu-
rity properties in the communication between a TPM client
and another party, there are several obstacles to overcome:
First of all, being able to sign with the EK would greatly
simplify the use of a TPM as it would eliminate the need
of a PCA and AIKs, as any client could directly verify
the EK signature by using well known CAs like Verisign.
However this is made impossible by design. Still, AIKs
might be useful in a multi-user environment. Secondly, the
Tspi_TPM_CollateIdentityRequest method speci-
fied in [13] requires the encryption of the TPM output to a
TPM_MakeIdentity command (to create an AIK) with the
PCA public key. This implies that it is impossible to modify
the request for use with a custom protocol like ours without
modifying the TSS itself, which consequently was done. By



translating TPM generated data structures into simple Java
objects there was no need to handle TPM specific data types
like TPM_KEY or TPM_IDENTITY_CONTENTS on machines
without a TPM, like the IdP or in the PKI. Everything can
simply be seen as encrypted and signed Java objects, and the
AIK and other TPM keys also are treated as normal RSA key
objects. This simplified enormously the integration of TPM
support in Gismo IdM.

b) AIK and LK certification: A detailed analysis of
the certification process is described in Section IV.

Unlike standard AIK certification processes, the CertAIK

is not returned after a successful certification of the AIK
on the PKI. If the client had the certificate, then it would
always have to send it along with an AIK signature to
allow for verification. Besides using more bandwidth, frequent
verification of unknown certificates can be quite problematic in
a tactical environment where connectivity to the trust anchor
(IdP) might not always be available. Also, AIK certificates
themselves are not the easiest certificates to deal with, as noted
in [6]. In the presented solution the AIK signatures are used
only when certifying an LK, hence only the IdP needs access
to the CertAIK .

The CertAIK itself does not need to be verified again,
because it can be assumed that if a client sent a certain AIK
handle, then a real TPM decrypted the corresponding AIK
certification response, and it is known that the corresponding
CertEK was valid since the handle was generated.

In case an attacker without an approved TPM obtained a
valid CertEK , he could fake an AIK request and fool the
PKI into generating an AIK certificate with an AIK which
was under the control of the attacker and not a valid TPM.
However, as long as the attacker is unable to decrypt or guess
the AikHandle, he cannot request a LK certification and
obtain a valid IS. Assuming the attacker does not have the
EK private key, we have to make sure he cannot obtain the
AikHandle by other means. This is why the AikHandle is
a completely random value, so that it is nearly impossible to
guess, and why we hash it before putting it in the CertAIK .
This prevents the attacker from discovering this value even
if the newly generated CertAIK were to leak from the PKI
CA. Letting the real TPM where the CertEK comes from
decrypt the AikHandle, and then steal the secret value, should
also be infeasible. In fact, a genuine TPM will not release the
decryption key unless the AIK that is being certified was
actually generated and currently loaded in the TPM.

Finally, when certifying a LK the TCG recommendeds the
use certificate signing requests (CSR) using a special X509v3
extension called SKAE [12]. This turned out to be almost
impossible as there are no standard libraries to create and
process SKAE extensions. The choice was made to simply
translate the TPM_CERTIFY_INFO data structure containing
the hash of the LK being certified, the PCR values given
as parameter at creation time and the AIK signature, into
a simple SignedObject in Java.

c) Platform integrity: Platform integrity is usually ver-
ified through remote attestation, where the PCR values written
during a Trusted Boot process are signed with an AIK and
sent with a log file and the CertAIK to a third party, which in
turn verifies the validity of the certificate, the integrity of the

PCR values and the system configuration against a database
of approved configurations. This is impractical in a tactical
mobile environment, as these databases would pose the same
challenges as PKI revocation lists. The proposal is to leverage
on the fact that machines are in a trusted state when the
administrator generates the AIK in the pre-deployment phase.
Combined with the fact that tactical missions have a relatively
short duration, the assumption can be made that this trusted
configuration will remain stable throughout the mission. Thus,
the LK can be bound to the current PCR values, assuming
that they are still the same as in the AIK certification phase.
The verification will take place on the PKI rather than locally
or on other clients, thanks to the CertAIK stored there. In this
way there is a guarantee that the LK can be used only if the
platform has been booted with a configuration trusted by the
administrator. In fact, even if a compromised platform creates
an LK with the correct PCR values to obtain an IS, it will not
be able to use it since those values are not the current ones.
The LK is defined as ephemeral, so that trying to reboot with
a valid configuration after getting the IS, would delete the key.
The advantage is also that a Quote operation is not necessary,
since the interesting PCR values are those used to create the
LK, and they are already signed in the TPM_CERTIFY_INFO
structure. If the PCR values of the LK are different from the
stored one, the IdP can either refuse to issue an IS, or issue it
with a warning.

At the moment the PCR 1 to 12 are used as they are auto-
matically calculated by any machine with a BIOS supporting a
TPM and running Windows 7 or higher, as they are also used
to support the BitLocker security features.

d) Compatibility with non-TPM equipped computers:
The structure of an IS is the same, regardless if it has been
issued through an LK attestation process or an ordinary IS
issuing process. As a consequence, all TPM-specific program
code is used in the certification phases, while all code related
to authentication and access control is not TPM-specific.
TPM equipped nodes and non-TPM nodes can communicate
without reservations. Since all TPM generated data structures
and requests are encapsulated in ordinary Java objects, the
communication with the IdP and PKI is seamless with the
same interface for cryptographic operations, but with different
providers. This puts the burden of parsing, extracting and
filtering of the TPM specific information on the TPM-equipped
client, which already has specific libraries for this purpose.
Please observe that in the spirit of the original Gismo IdM no
certificates are ever exchanged. Hence, adding TPM support
does not require a new certificate infrastructure or extra PCA,
and traffic and protocols between clients are unaffected.

Cross COI operations also still work as described in Section
III. Since the IS resulting from an LK attestation process is
similar to any other IS, it may also be used for a request
of a guest IS issue. The guest issue will contain the same
information regarding the TPM protection of the client, which
may enter into the access control decisions in the foreign COI.
No new trust relationships are introduced.

e) Discarded computers: If a computer is stolen or dis-
carded it should be excluded from use. By simply deleting the
associated AIK certificate from the PKI certificate repository,
no more LK attestation can take place from that computer.



VI. RELATED RESEARCH

Research concerning the use of tamperproof hardware units
to strengthen the trust in different kind of information systems
has been going on for quite some time. The focus of this paper
is on Identity Management Systems and in particular on how
to increase the trust between users, nodes and services in a
dynamic and heterogeneous tactical environment.

The idea of using a TPM to improve Identity Management
Systems is not completely new. The use of Trusted Computing
(TC) concepts with Single Sign On (SSO) systems has been
investigated in [8], [9], while in [7] a TPM based protocol for
OpenID is presented. The basic idea in [8] is fundamentally
different from our work, since the entity making use of a
TPM to attest its trustworthiness is the IdP generating the
tickets (identity statements in our case) rather than the client
using them. The presented approach facilitates cross domain
authentication because the recipient of the ticket can verify the
status of the IdP that issued it and therefore decide to trust it
without a direct trust relation. A similarity with our system is
that also in our case the same ticket (IS) can give access to
different services as long as the IdP that issued it is trusted.
In [7] the focus is shifted to the client. In this case the ticket
is generated directly on the client and signed with a TPM
certified key. In [7] the IdP verifies the signature on the ticket,
the authenticity of the AIK that certified the signing key,
and the status of the client platform that was attested through
specific PCR values against a database of valid configurations.
If the verification is successful, the client is redirected to the
desired service through a request signed by the IdP. So the
IdP must be contacted every time the user wants to use a new
service. In this case the similarities with our system stop with
the generation of an AIK and a TPM certified key on the
client side that are later verified by the IdP. In a sense both
works bind and delegate the identity of the user to that of the
TPM.

The main difference between our solution and previous
works about trusted IdM systems is that the intended oper-
ational environments are not the same. While OpenID and
Kerberos are mostly intended to simplify web services authen-
tication, Gismo IdM is designed to provide both authentication
and access control in a tactical environment with relatively
low resources, intermittent connectivity and a well defined
community of interest. As a consequence, the underlying
communication protocols are essentially different. Another
difference is that one of the motivation for the use of a
TPM in [7] was to improve user experience on the web by
eliminating the need for passwords in the authentication pro-
cess. Passwords are in fact substituted by TPM-protected user
certificates, but no guarantee is given that the local protection
is sufficient and that a user’s AIK cannot be misused. In
a tactical environment where different soldiers can use the
same communication terminal, this is an important aspect of
security. In the Gismo IdM protocol proposed in this paper the
TPM keys are cryptographically bound to a user identity, so
that we can achieve a higher degree of integrity assurance. In
fact, both the platform and the user must have been subject
to some verification process before the identity statement is
issued. This gives higher flexibility for access control, which
can depend on both the user attributes and the degree of trust
of the machine used for the communication. Finally, while in

[7] the TPM involvement is limited to the certification process
which involves the IdP, we extend the use of the TPM certified
key to the transactions with the target service, hence improving
the security of the system as a whole.

Finally, we are not aware of similar works regarding the
lighter platform integrity verification we proposed.

VII. CONCLUSIONS

The research efforts presented in this paper resulted in
a novel solution to strengthen the trust between peers in a
tactical environment with the combined use of TTP agents and
hardware protection units. The prototype we developed and the
preliminary tests showed that a seamless integration of TPM-
equipped machines in the existing Gismo IdM is possible and
fully supported by the current infrastructure.

The client libraries of the Gismo IdM is ported to the
Android platform and this port is fully interoperable with the
TPM extensions presented in this paper.

Future research will include the investigation of a way to
extend the trust in the system beyond the boot process, possibly
by using a Trusted Execution Environment (TEE) for security
critical operations, and a safer way to employ the subject’s
private key in the LK certification process.

REFERENCES

[1] John Hughes et. al. Profiles for the OASIS Security Assertion Markup

Language (SAML) V2.0. OASIS Standard, 2005.

[2] Anders Fongen. Architecture patterns for a ubiquitous identity manage-
ment system. In ICONS 2011, Saint Maartens, Jan. 2011. IARIA.

[3] Anders Fongen. Federated identity management for android. In
SECURWARE 2011, Nice, France, July 2011. IARIA.

[4] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC Editor, United States, 2002.

[5] IAIK TU Graz. Trusted Computing for the Java Platform. http:
//trustedjava.sourceforge.net/. Online, Accessed Februar 2013.

[6] Carolin Latze and Ulrich Ultes-Nitsche. A proof-of-concept implemen-
tation of eap-tls with tpm support. In Hein S. Venter, Mariki M. Eloff,
Jan H. P. Eloff, and Les Labuschagne, editors, ISSA, pages 1–12. ISSA,
Pretoria, South Africa, 2008.

[7] A. Leicher, A.U. Schmidt, Y. Shah, and Inhyok Cha. Trusted Computing
enhanced OpenID. In Internet Technology and Secured Transactions

(ICITST), 2010 International Conference for, pages 1 –8, nov. 2010.

[8] Andreas Leicher, Nicolai Kuntze, and Andreas U. Schmidt. Implemen-
tation of a trusted ticket system. In Dimitris Gritzalis and Javier Lopez,
editors, SEC, volume 297 of IFIP, pages 152–163. Springer, 2009.

[9] Andreas Pashalidis and ChrisJ. Mitchell. Single sign-on using trusted
platforms. In Colin Boyd and Wenbo Mao, editors, Information

Security, volume 2851 of Lecture Notes in Computer Science, pages
54–68. Springer Berlin Heidelberg, 2003.

[10] Martin Pirker, Ronald Toegl, Daniel M. Hein, and Peter Danner. A
privacyca for anonymity and trust. In Liqun Chen, Chris J. Mitchell,
and Andrew Martin, editors, TRUST, volume 5471 of Lecture Notes in

Computer Science, pages 101–119. Springer, 2009.

[11] Ronald Toegl, Thomas Winkler, Mohammad Nauman, and Theodore W.
Hong. Specification and standardization of a java trusted computing api.
Softw., Pract. Exper., 42(8):945–965, 2012.

[12] Trusted Computing Group. TCG Infrastructure Workgroup Subject Key
Attestation Evidence Extension. http://www.trustedcomputinggroup.
org/. Online, Accessed February 2013.

[13] Trusted Computing Group. TCG Software Stack (TSS) Specification
Version 1.2skar. http://www.trustedcomputinggroup.org/. Online, Ac-
cessed Februar 2012.


