Trusted Service Discovery through Identity
Management

Anders Fongen and Trude Hafsge Bloebaum
Norwegian Defence Research Establishment (FFI)
Emails: {anders.fongen,trude-hafsoe.bloebaum} @ffi.no

Abstract—Service oriented environments face threats from
unauthorized clients and fake or compromised services. The
threats exist both during service discovery and service invocation,
and should be mitigated through the same security framework.
Through the use of a modern identity management system
which offers a combination of key attestation and attributes for
access control, more threats can be appropriately addressed. The
combination of discovery and identity management results in a
more comprehensive threat mitigation, scalable maintenance of
security related information and easier federations of security do-
mains. The architecture and protocols of this system combination
are presented and discussed.

Keywords-Identity management, Authentication, Integrity, Ser-
vice Discovery

I. INTRODUCTION

The term Service Discovery (SD) refers to the broking
process through which service clients may learn about rele-
vant service providers. In service-oriented systems, having a
reliable SD capability is essential in order to achieve loose cou-
pling between providers and clients, particularly in dynamic
environments. This makes SD an integral part of the Service-
Oriented Architecture (SOA) concept. The SD mechanism is
responsible for providing potential clients with information
about the identity and the location of a service. In short, this
means that the SD must be able to provide a service description
and a service endpoint when requested.

SD can be implemented either as a directory-based registry,
or as a distributed mechanism. No matter how the mechanism
is implemented, it must support the communication illustrated
in Figure 1. Service providers must be able to publish their
services by providing the SD mechanism with the endpoint and
the description of their services (step 1), clients must be able
to lookup services (step 2), and be able to bind to a service
using the information provided by the SD (step 3). Because the
SD acts as a directory in which clients can look up services,
we will throughout this paper refer to this mechanism as the
Directory Service (DS).

SD involves the use of selection criteria which are used
to filter the set of services presented to the client. If SD is
performed using a pull based mechanism, where the client
actively queries for services, the selection criteria is used to
limit the set of services included in the query response. For
push based interaction the services announced to the client
are either selected on the service side, or on the client side.

Fig. 1. The SOA triangle of client, service and directory

In both cases the selection is based on a filtering expression
decided by the client.

For a man-in-the-middle attack in a SOA system, the DS is
an attractive attack vector. An attacker can misguide a client
into the use of a fraudulent service if the DS is compromised.
This would be analogous to what is known as phishing attacks
in a web environment.

Security requirements of an SD system are straightforward
and intuitive: The services should be genuine and the clients
should be authorized. The security concerns of the interacting
parties can furthermore be formulated as follows:

Client:

« The discovery service should be genuine, e.g. belong to
the trust domain and conduct operations as expected

o The indicated services must meet the selection criteria

e Queries are private and should only be known to the
discovery service

Service:

« The discovery service should be genuine
e Only authorized clients should attempt to invoke the
service

Directory Service:

o Only authorized clients should make queries
¢ Only authorized services should make announcements

The words authorized and genuine are used numerous times
in the list of requirements and their use in this paper needs an
explanation: Subject to authentication, where the party (client
or service) proves its identity, an authority will determine
the attributes that are associated with that identity. During
invocation of services, a boolean function called the access
requirement will use the attribute set as parameters and return
a true/false value which decides if the invocation can be
completed, i.e. the party is authorized for the operation. This

Dette er en postprint-versjon / This is a postprint version.
DOl til publisert versjon / DOI to published version: 10.1117/12.920657

evaluation principle is elsewhere known as “Attribute Based
Access Control “ (ABAC).

The term genuine indicates that the conduct of an operation
by a party happens in accordance with expectations and agree-
ments. A party infected by malware may well be authorized
but not genuine.

The traditional approach to access control is to let the
service be its own authority and maintain its own registry of
users and access rights. This is a simple and well understood
approach but requires multiple registration of subjects, which
is known to scale poorly. In identity management systems
(IdM), the authority is a centralized instance called identity
provider (IdP) with the responsibility for maintenance of
identity information on behalf of the entire community.

The IdP will issue identity statements which are attestations
of the attributes and public keys which belong to identities.
The information is bound to the identity for a time period
through an expiration date and a signature. The IdP is the
trust anchor of the community and its signature is trusted by
everyone.

For the purpose of building a proof-of-concept prototype,
an existing experimental IdM has been used. The Gismo IdM
has been built for the purpose of testing IdM systems in
military tactical domains using mobile nodes and wireless
communication. This IdM system is now being extended to
improve the security and trust in discovery service operations.

The contributions of this position paper is: (1) A pro-
posed security model for discovery services (2) An integrated
approach to authorization during discovery and invocation
(3) The concept in attested genuineness applied to discovery
services. (4) The reference implementation of the proposed
solution

The identity management mechanism presented in this paper
is a generic concept that can be applied to a number of
different SD mechanisms, as it does not rely on solution
specific features such as provider registration. Note that the
interaction between provider, client, and DS is often imple-
mented as services. This means that the information exchange
can, as soon as the identity of the involved partners have been
established, be protected using the same standardized security
mechanisms as those used to protect other services.

The remainder of the paper is organized as follows: Section
IT proposes a set of security requirements for SD systems.
Section III introduces the Gismo IdM in more details, while
Section IV provides details on how to apply its access control
support in a SD system. Section V presents some related
research while Section VI concludes the paper and identifies
remaining issues on this matter.

II. A SECURITY MODEL FOR DISCOVERY SERVICES

The stakeholders should set the access requirements. In
other words, the clients and services should formulate the
requirements necessary to protect their assets and interests.
In the model presented in this paper the discovery service
(DS) is merely a broker which ensures that the formulated
access requirements are met during the discovery operation.

The access requirements formulated by the client during a
discovery operation must be met by the service in the sense
that the attributes contained in the identity statement of the
service evaluates the boolean function to true.

In the opposite direction, the service formulates the access
requirements which must be met by the attributes of the client.

The mutual access requirements must be met during the
invocation phase as well as the discovery phase, since control
during discovery alone leaves some unsolved risks:

1) The discovery service may be compromised and fail to
enforce the access requirements

2) The client may reuse old discovery information to invoke
services it no longer has access to

3) The client may pass the discovery information on to
non-authorized clients.

4) The service has changed its access requirements, but
the new requirements has not yet propagated to the
discovery service

In Chapter IV, where the implementation is presented, it

will be shown how access requirements are represented as
serialized objects which are transferred to the directory and
stored there. It will also be shown how the liveness property
of the services is maintained through periodic updates of the
identity statements.

Finally, additional selection criteria may apply to the dis-

covery operation, like cost, service quality and semantic prop-
erties. This will be discussed in Section IV-D.

III. Gismo IDM

The presence of an identity management system is essential
to the management of subject keys and attributes. The identity
provider (IdP) will serve as a trusted third party (TTP) and
issue attestation of both keys and attributes.

For the efforts on establishing a proof-of-concept prototype
for trusted service discovery, an existing IdM called Gismo
1dM has been employed. Gismo IdM was developed in order
to study the necessary properties for an IdM used in a multi-
domain wireless mobile network used by a coalition tactical
force.[3]

In Gismo IdM, existing PKIs are kept for reasons of in-
vestment protection, but encapsulated by a number of Identity
Providers (IdP), each serving a “community of interest” (COI).
The members of a COI share the IdP’s public key as their
trust anchor. The IdP issues Identity Statements (IS) to attest
the public key and attributes of a subject. The IS is given a
short lifetime and sealed with the signature of the IdP. Due to
the short lifetime, no revocation arrangement is necessary.

The architectural overview of Gismo IdM is shown in Figure
2. Observe that the COI members are never exposed to PKIX
protocols or data objects (X.509 certificates or revocation
lists). The key properties are explained in the following
paragraphs:

A. Authentication support

The identity provider (IdP) issues Identity Statements (IS)
which bind the public key of a subject to its identity, analogous

Dette er en postprint-versjon / This is a postprint version.
DOl til publisert versjon / DOI to published version: 10.1117/12.920657

-

Attribute
store

store

Attribute |
I

trust relations

Attribute
store

Fig. 2. The functional components of Gismo IdM. Observe that the IdP serves one single COIL. Key management is handled by the PKI whereas the attribute

management is done by the IdPs on the COI level

Subject Distinguished Name
Subject Public Key

Subject Attributes

Valid from-to

Issuer Distinguished Name

Issuer’s Signature

Fig. 3. The structure of the Identity Statement

to X.509 Certificates. Identity statements are issued to local
subjects registered in the IdP, as well as to subjects who can
display an IS issued by a different IdP to which this IdP has
a trust relationship. The structure of an IS is shown in Figure
3.

The subjects (either client or server) authenticate themselves
during discovery or service invocation by the use of their iden-
tity statements and their private keys. Different authentication
protocols have been designed with the purpose of generating
as little network traffic and as few protocol round trips as
possible. [4]

B. Integrated access control

Included in the identity statement is a set of attributes which
describes properties of the subject in the form of name-value
pairs. The attributes can describe roles of the subject and enter
into access control decisions based on the Role Based Access
Control (RBAC) or Attribute Based Access Control (ABAC)
model. They can also describe other properties of the subject,
e.g., preferred language, proficiency level etc.

The attributes are sealed inside the identity statement with
the signature of the IdP, so they cannot be changed once issued.

C. Cross-COI operations

Clients can invoke servers in a different COI as indicated
in Figure 2, provided that there exists a trust relationships
between the two COIs. A client obtains an identity statement
from its IdP, then passes on that IS to the IdP of a foreign

COL. The foreign IdP can issue a guest IS containing the same
information, but signed by the foreign IdP. Since the guest IS’s
signature will be trusted by servers in the foreign COI, it can
be used to authenticate to these servers. Server authentication
requires a cross domain IS issued from one IdP to the other,
so a signature chain back to the client’s trust anchor can be
constructed. The middle part of Figure 4 shows the protocol
that takes care of this. The IdP of COI A, termed IdP,, issues
a “native” identity statement to the client, which is given to
1dP,, which in turn issues a guest identity statement.

D. Attested genuineness

The integrity of the software running in a computer can be
inspected by a hardware unit called Trusted Platform Module
(TPM) which will issue certain cryptographic proof only if
the integrity is approved. [10] It has been shown in [6] that
the cryptographic proof can be verified by the trusted third
party (the IdP) which will issue identity statements with certain
reserved attribute values. These values will attest to anyone in
the community that the subject operates from a computer with
an inspected and verified software stack.

The concept of attested genuineness extends the trust in an
operation from the identity of the controlling subject to the
conduct of the subject, and that the operation takes place in a
bona-fide manner unaffected by potential malware attacks.

E. Statefullness of services

During invocation of services, two different authentication
mechanisms were developed: One simple protocol for stateless
services, which are services whose system state is not affected
by invocations, e.g. a lookup service. Replay attacks do
not threaten the integrity of a stateless service, and costly
replay protection may therefore be replaced with an encrypted
response in order to render the replay useless to an attacker.

For a stateful service, characterized by a state change during
service invocation, replay attacks must be detected before
actual invocation takes place. This is a more costly mechanism
that requires clock synchronization and a state memory in the

Dette er en postprint-versjon / This is a postprint version.
DOl til publisert versjon / DOI to published version: 10.1117/12.920657

Client X, 1dP, PKI, 1dP, Service F},
name
~ | Validate cert E
(dy)q =
(Idy), (asynchronous operation) |
(Id,)a ~
(Idx>b (Idb)a

(Idy), + (Message+Nonce)S,

(Ids)» + (Response+Nonce)EyS

Fig. 4. The authentication protocol for a stateless service. The symbol (1dy),
indicates the identity statement for Subject x issued by the IdP for COI a.
(Idp)4 indicates the cross-COI for the IdP in COI b, issued by the IdP in COI
a. Sy indicates signed by subject x, E, encrypted to subject x.

server. The invocation protocol designed for this purpose is
described in [4] and is functionally equivalent to the stateless
variant in Figure 4.

IV. IMPLEMENTATION OF ACCESS CONTROL DURING
DISCOVERY

Section III describes the authentication and access control
support during service invocation. The security mechanisms
related to service discovery are based on the same mechanisms
and will now be described in more detail.

The security requirements listed in Section I mandates the
mutual authentication between clients, services and directory.
Prior to discovery operations (queries and announcements),
all parties must obtain identity statements from the IdP and
authenticate themselves using the protocol shown in Figure 4.
During the discovery operations, the necessary authentication
elements (IS, signature) are piggybacked on the discovery
service message (query or announcement).

A. The service table

The directory will keep a table of live services containing
information pertaining to access control, metadata matching,
service invocation and liveness control. Each row of the service
table has these elements, some of which are to be explained
later in the paper:

o The service endpoint URL

o The service description tuple

o The access requirement function

« The service invocation parameter object
o The Identity Statement of the service

B. Service announcement messages

Services should announce themselves once they are in
operation. They must locate the IdP, get their IS, locate the
directory, then authenticate with it and send an announcement
message. The announcement message contains the information
stored in the respective row of the service table. The structure
is as follows:

o The service endpoint URL

o The service description tuple

o The access requirement function

« The service invocation parameter object

The IS is already included in the authentication part of the
message as shown in Figure 4.

As mentioned in Section III, the IS expires after a while,
after which it is disregarded from discovery operations. The
service must therefore resubmit the the announcement message
when necessary in order to be regarded as live. This is how
the liveness property of the service is maintained, as defunct
services will be removed from the service table.

The response from the directory is a simple status message
which also authenticates the DS to the service as shown in
Figure 5.

C. The service query/response messages

In order to query for live services, the client need to authen-
ticate with the directory and send a service query. The query
response from the directory will contain the authentication
proof of the directory as shown in Figure 4. The service query
consists of these elements:

o A service description template
o The access requirement function

In order to match the query to a row in the service table,
all three tests must pass:

1) The service description template matches the service
description object, cf. Section IV-D

2) The client’s subject attributes (contained in the IS) meet
the access requirements of the service and vice versa,
cf. IV-E

3) The IS of the service is not expired (liveness property)

The matching process creates a result set of service rep-
resentations which is sent back to the client as a response
message. Each representation contains information necessary
for the client to rank the services before invocation takes place,
as well as endpoint and syntax information necessary for the
actual invocation. The structure is as follows:

o The service endpoint URL

« The service description tuple

« The service invocation parameter object
o The distinguished name of the service IS
o The expiration time of the service IS

D. Service matching

The process through which a service query is matched with
a set of service descriptions is not a part of the security model
and consequently not one of the contributions of this paper.
Any matching mechanism may be fitted to this system. For
the experimental prototype, a tuple matching mechanism was
chosen somewhat similar to what is found in some OODB
systems. The specific mechanism is taken from a Tuplespace
implementation called SmallSpaces.[2]

In the tuplespace retrieval mechanism the template consists
of an ordered set of values or wildcards, which matches tuples

Dette er en postprint-versjon / This is a postprint version.
DOl til publisert versjon / DOI to published version: 10.1117/12.920657

Fig. 5. The total sequence of IS issuing operations, discovery operations and
Figure 4. Several different ordering of messages may be valid.

with the same arity (number of values) as well as same values
in the non-wildcard position of the template.[7] Matching can
be typed as well, and in an object oriented environment the
class of a template element can match tuple elements of any
subclass. Value matching is done through the Java equals (. .)
method (or similar).

Object oriented tuple matching allows for a flexible range
of matching arrangements where hierarchical and orthogonal
type checking can be combined with different value matching
strategies.

E. Access requirement evaluation

Access requirement are expressed in the form of boolean
expressions. During evaluation the variables are given values
from the identity statement attributes. An example of an access
requirement is

nationality=="uk" OR sec_clearance=="NATO secret"

which during evaluation is using the values of the attributes
named nationality and sec_clearance from the identity
statement of the subject under inspection.

Access requirements are represented as expression trees in
Java object form and serialized during network transport. It
is included in service announcements and service queries and
evaluated by the directory during the service matching process.

FE. Invocation parameter object

A service implementation in Gismo IdM is a Java servlet
which inherits from ServiceContainer and follows certain
coding conventions, some of which relates to discovery, other
to invocation.

The parameters used for service invocation are provided as
parts of a parameter object which is given the correct values
prior to invocation. During the invocation, the serialized object

Dette er en postprint-versjon

Client X, 1dP, Service F, 1dP, DS,
IS issue —
IS issue
IS issue IS issue »
]
i 1]
IS issue rcn
Guest IS issue

Auth+Service annguncement r 10
0]
Q
Auth o
<
m
,]
Auth+Service query <
o
Auth+Query response| g
b
. . =4 =z
Auth+Service invgcation r < -
) Q e
Auth+Service response g 7]

o

P4

service invocation. Details regarding IS issue and authentication are shown in

is passed to the servlet endpoint URL through a POST oper-
ation. The traditional servlet parameter passing mechanism is
not used.

The structure of the parameter class becomes the syn-
tax description of the service, analogous to a WSDL (Web
Services Definition Language) document in a Web Services
environment.

An instance of the parameter object is returned as a part of
the service query result set. The client may execute static code
for instantiating this object, or it may employ the reflection
API to manipulate the object during run-time. The role of
the object is to transport values, not to provide any logic
operations. It will therefore mostly contain getter and setter
methods.

The replacement of a WSDL-based syntax description with
a parameter object simplifies the client code considerably and
allows for easier experimentation with ad-hoc selection and
invocation.

G. Cross-COl operation

Section III-C introduced the cross-COI mechanisms in
Gismo IdM. Cross COI operation allows the client and service
to belong to different Community of Interest and rely on dif-
ferent IdPs. This is still possible now when Service Discovery
has been introduced, since the SD is no more than another
service. When the service and the client belongs to different
COlIs, the directory can belong to one of them, or even to a
third. As long as the required trust relations are established
between the IdPs of the different COlIs, the service discovery
mechanisms may well be invoked across COI borders.

H. The liveness property

Since identity statements are issued with a limited lifetime,
the subject attributes cannot be regarded as attested after IS

/ This is a postprint version.

DOl til publisert versjon / DOI to published version: 10.1117/12.920657

expiration. It is the duty of the service to repeat the announce-
ment process so often that the directory service always has a
non-expired IS.

This mechanism will also maintain the liveness property of
the service description: If the server computer stops its oper-
ation, it will also stop refreshing the service announcement,
and as the IS expires the directory will regard this service as
defunct.

Since many existing SD mechanisms, most notably the
standardized Web service registries, lack liveness support, a
side effect of using the identity statement lifetime in this
manner is improved functionality of the SD mechanism itself.

V. RELATED RESEARCH

In most part of the research on Discovery Services the
focus has been on scalability and efficiency of the architecture,
expressive power of the selection process, and sometimes on
security issues. In 1999, Czerwinski et al. [1] suggested the
use of asymmetric keys and encryption to ensure that only
authorized clients were allowed to make service queries. In
their model, the access requirements are set by the directory
service, not by the parties themselves. They rely on a tradi-
tional PKI architecture, which makes cross-domain operation
much harder. But most important to this discussion is the lack
of binding to the authentication of the invocation operation.
Without such binding it is not possible to ensure that the
invoked service really is the one referred to by the discovery
process.

In 2007, Trabelsi et al. [9] performed an early study into the
security requirements of SD, and suggested a security mecha-
nism based on attribute based encryption. Here, encryption
is used to limit which services a given client can receive
information about in a setting where service information is
distributed using multicast messages. This mechanism can be
used to protect sensitive information in the SD messages, but
it relies on the fact that information about user identity and
attributes is available through other mechanisms.

Among more recent works are the experiments by Mochetta
et al. on ubiquitous computing [8] where a distributed ap-
proach to security and privacy is investigated. Their security
solutions are not founded on any threat analysis, and there is
little discussion on matters of integrity and availability. De-
centralized authorities as found in some peer-to-peer security
systems offer only probabilistic trust relations, not determin-
istic as elsewhere. The authors believe that probabilistic trust
will not be accepted in commercial applications.

With respect to SOA-specific security, there exists a number
of standards that address different aspects of security. The
Security Assertion Markup Language, in conjunction with
WS-Trust, enables the usage of security tokens to establish
trust between parties. In addition, WS-Security is commonly
used to apply security functions such as encryption and in-
tegrity checking to SOAP messages. These standards focus on
providing authentication, confidentiality, and integrity of each
individual SOAP message exchange, but they do not address
the full security requirements of the Discovery Service. These

standards could however be used as components in a Web
Service-based implementation of the concept suggested in this
paper.

To the authors’ knowledge, there is no published results
which incorporates a federated identity management system
into both the discovery and invocation phase, and leaves the
security requirements to be formulated by the stakeholders,
not the system administrator of the middleware components
(like the discovery service). The work presented in this paper
is likely to be novel and to leverage the trust between the user
and the provider of a service that they both operate correctly
and in a bona-fide manner.

VI. CONCLUSION AND FURTHER RESEARCH

The results presented in this paper demonstrate that a
Service Discovery system in combination with an IdM system
may improve the security and trust between the parties of
a SOA transaction. The parties formulate their own access
requirements which must be met both during discovery and
invocation, and the liveness property is maintained through
the identity statement expiration mechanism.

The issuing and authentication protocols are designed for
the use in low bandwidth, wireless networks and consumes
little network resources. The program code has been ported
to Android so that smartphones can enjoy the same security
services as ordinary computers.

Future research on trusted discovery systems involves the
use of the TPM (Trusted Platform Module [10]) for the sake
of integrity protection and integrity attestation. The effort is
denoted Attested Genuineness [5], and aims to heighten the
trust in a computer which has its software integrity inspected
by a hardware unit and attested by a trusted third party.

REFERENCES

[1] Steven E. Czerwinski, Ben Y. Zhao, Todd D. Hodes, Anthony D. Joseph,
and Randy H. Katz. An architecture for a secure service discovery
service. In Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, MobiCom ’99, pages
24-35, New York, NY, USA, 1999. ACM.

[2] Anders Fongen. SmallSpaces tuplespace Server.
http://www.fongen.no/?docname=SmallSpaces, 2007. Accessed:
11/03/2013.

[3] Anders Fongen. Architecture patterns for a ubiquitous identity manage-
ment system. In JCONS 2011, Saint Maartens, Jan. 2011. IARIA.

[4] Anders Fongen. Federated identity management in a tactical multi-
domain network. Int. Journal on Advances in Systems and Measure-
ments, Vol.4, no 3&4, 2011.

[5] Anders Fongen and Federico Mancini. Attested genuineness in service
oriented environments. In ICDIPC 2013, Dubai, UAE, 2013.

[6] Anders Fongen and Federico Mancini. The integration of trusted
platform modules into a tactical identity management system. In
MILCOM, San Diego, USA, 2013.

[7] David Gelernter. Generative communication in linda.
Program. Lang. Syst., 7(1):80-112, 1985.

[8] Eduardo Moschetta, Rodolfo S. Antunes, and Marinho P. Barcellos.
Flexible and secure service discovery in ubiquitous computing. J. Netw.
Comput. Appl., 33(2):128-140, March 2010.

[9] Slim Trabelsi, Laurent Gomez, and Yves Roudier. Context-aware

security policy for the service discovery. In AINA Workshops (1), pages

477-482, 2007.

Trusted Computing Group.

http://www.trustedcomputinggroup.org/.

2012.

ACM Trans.

[10] Trusted Computing Group.

Online, Accessed Mars

Dette er en postprint-versjon / This is a postprint version.
DOl til publisert versjon / DOI to published version: 10.1117/12.920657

