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Abstract—Wireless Sensor Networks are proven highly success-
ful in many areas, including military and security monitori ng.
In this paper, we propose a method to use the edge–betweenness
community detection algorithm to determine clusters and to
facilitate in-network data aggregation for these applications. To
minimize the cost of determining the clusters, the approach
is based on exploiting the topology information from the ad
hoc routing protocol. Three different schemes are proposed.
(1) A distributed clustering scheme using the OLSR routing
protocol. (2) A centralized scheme using OLSR. (3) A centralized
scheme using an extension to the DYMO-low routing protocol.
All schemes support sensor heterogeneity allowing that different
data content can use different routing paths. The paper presents
simulation results and an analysis of the cluster generation for
each of the schemes. The results show that our method is a
simple and effective method to improve scalability and lifetime
of roadside sensor networks.

Index Terms—Clustering, Data Aggregation, Wireless Sensor
Networks

I. I NTRODUCTION

Wireless Sensor Networks (WSNs) are proven effective in
the fields of perimeter security and military surveillance [1].
In these areas, great benefit can be achieved by using covert
miniaturized sensors, as they are difficult to avoid by a possible
intruder and less subject to vandalism or theft compared to
traditional sensor systems. Further, the redundancy givenby
ad hoc network protocols improves reliability compared to
previous systems. However, WSNs face two basic challenges;
energy efficiency, due to the battery powered sensors, and
scalability, due to a potential high number of devices needing
to interoperate. The goal of this paper is to provide a method
to solve these two issues by the means of in-network data
aggregation.

Data aggregation is particularly interesting for roadside
surveillance systems. In such systems, the sensor nodes col-
laborate in detecting events such as movement and particular
behavior of objects along the road. Multiple nodes are here
likely to sense the same event simultaneously. Conventional
routing treats these sensor readings individually and ignores
the redundant and highly correlated nature of the data. This
leads to ineffective use of the scarce energy and limited
channel resources. By employing data aggregation, designated
aggregation nodes can wait for multiple reports, either from the
same node (temporal redundancy), or from neighboring nodes
(spatial redundancy), before reporting about the event to the
sink. This strategy not only reduces the traffic considerably, but
also reduces the probability of false alarms, as most sensors

are likely to be inaccurate and have a small probability of
falsely reporting events that are not actually present.

The contributions of this paper include: (1) A data aggrega-
tion scheme based on edge–betweenness community detection,
(2) three different routing protocol schemes supporting both
centralized and distributed clustering, (3) modification and
improvement of the DYMO-low routing protocol, and (4), a
quantification of the trade-off between cluster-aggregation and
traditional routing, and a comparison of our schemes with the
well-known K-means clustering. Although we mainly focus
on roadside surveillance networks, our protocols, recommen-
dations and results are also viable to other classes of sensor
networks that are topologically similar to our scenario.

Before presenting our own scheme and results, it is worth
reviewing some of the preceding work regarding data aggre-
gation in WSN.

II. RELATED WORK

Different data-aggregation alternatives can be categorized
based on the network architecture involved in the aggregation,
which can be structured either as a chain, a tree, or by clusters.

Chain-basedaggregation schemes create linear chains for
data-aggregation. Each node in the chain only transmits to
its closest neighbor, which fuses the data with its own mea-
surements, and retransmits along the chain. In PEGASIS [2],
the chains can be made either centrally or distributed.Tree-
baseddata aggregation on the other hand, organizes the nodes
in an aggregation tree rooted at the sink. Directed Diffusion
[3] is one such example. If only a subset of the nodes in
the network are sensing nodes, tree based techniques provide
better performance than chain-based since the aggregation
tree is better than the chain for mere packet routing. For
both strategies, the aggregation delay perceived by a node is
based on its position in the aggregation tree (or chain). The
overall aggregation delay therefore increases drastically with
the number of nodes in the network [4]. The challenge is to
balance the trade-off between energy efficiency and the delay
posed by the aggregation. Both tree-based and chain-based
aggregations are best suited for scenarios whereall nodes in
the network produce relevant informationperiodically. For
our event-initiated scenario, these proposals are inadequate
since the long aggregation delay makes it difficult to uniquely
distinguish separate events.

Cluster-basedschemes organize the sensor nodes into vir-
tual groups and perform aggregation only at designated cluster-



Fig. 1. Edge–betweenness clustering (left) takes the topology into account
while K-means (right) use mere geographical positions for clustering.

heads (CHs). This approach drastically reduces the aggregation
delay compared to the chain and tree architectures, at the cost
of possibly longer routing paths. Notice that cluster schemes
are not limited to aggregation only. LEACH [5] for example,
uses clustering both as a tool to aid data aggregation and to
coordinate access of the wireless channel within the cluster.
LEACH only supports single-hop transmission between each
cluster-head and the sink, making the approach invalid for our
purpose. Lai et al. have recently extended LEACH by allowing
multihop transmissions and by better balancing the energy
consumption [6]. Gong et al. [7] takes a different approach and
propose to use modified K-means clustering, and determines
the clusters centrally assuming that the geographical positions
of the nodes are known. We describe this method and compare
it to ours in the subsequent sections.

While [5]–[7] use explicit control messages to initiate the
clusters, our scheme has the ability to passively exploit the
underlying routing protocol to gain topology knowledge. An-
other key difference is that the above methods require that all
traffic must pass through the cluster-head, while our approach
allows some traffic classes to take an optional (shortest-path)
route towards the sink.

III. C LUSTERING

A. K-means

K-means is a classical and simple method for clustering that
has been applied to several problem domains, including sensor
networks, as demonstrated by Gong et al. [7].

When applied to sensor node clustering, the procedure is as
follows: (1) the number of clustersk must be predetermined.
(2) k points are placed in the geographical space represented
by the nodes being clustered. These points represent the cluster
centroids. (3) Each node is assigned to the cluster with the
closest centroid (in terms of Euclidian distance). (4) The
positions of thek centroids are recalculated as the mass center
of each cluster. Then, (3-4) are repeated until the centroids no
longer move. In [7], the nodes with the minimum distance to
the cluster centroid and highest residual energy are elected as
cluster-heads.

While this algorithm outperforms LEACH, its disadvantage
is that the number of clusters must be predetermined (or
estimated), and that the exact geographical position of the
nodes must be known.

B. Edge–betweenness community detection

Edge-betweenness community detection is a method pro-
posed by Newman and Girvan [8]. Community detection algo-
rithms are known from physics literature, (i.e., a community is
a region of the network with dense connections) and have been
successfully used to capture interactions in ad hoc networks
[9]. The algorithm tries to find the communities of the network
with the maximum modularity value. The modularity measure

is based on the formulaQ =

m
∑

i=0

(

eii − a2
i

)

wherem is the

number of detected communities,eii represents the fraction of
links in the network that connect the nodes in communityi,
andai represents the fraction of links that connect two nodes
in community i. The algorithms proposed by Newman and
Girvan [8] all find good approximations for the maximum
modularity. The algorithm (EB) searches for the division of
the network with the greatest modularity value by removing
links with high importance in the network (see Algorithm 1).

Algorithm 1 Edge-betweenness
EB(G)

1) G′ = G
2) for i = 1 . . . |L|

a) G′ = {G′ \ {ebi} | bi = max (betweenness (G′))}
Pi = {connected (G′)}

b) Qi = Q (Pi)

3) return {Pl | l = max (Qi)}

The algorithm recursively computes the betweenness score
of each link inL defined by the number of shortest paths
going through a link. The link with the highest betweenness
score is removed from the graph, and the modularity value is
recomputed. The algorithm is applied until there are no more
links left. The communities are determined by the partitioned
network obtained in the step with the maximum modularity
value.

As opposed to most existing clustering methods, EB-
clustering does not put any a priori constraints on the cluster
structures (e.g., cluster diameter, number of nodes in a cluster
or number of clusters). While K-means requires that a local-
ization scheme is present in the network, EB-clustering only
relies on the network topology. Notice that K-means assumes
that geographically adjacent nodes also are 1-hop neighbors.
This is not always the case for sensor networks. As shown
in Fig. 1, this assumption can lead to suboptimal clusters and
excessive paths between cluster members and the cluster-head.

C. Fetching topology information

The prerequisite for EB-clustering is to have an updated
view of the network topology. Such information can either
be obtainedactivelyby exchanging explicit control messages
between the nodes, orpassively by taking advantage of
information available by consulting the underlying routing
protocol. Our approach belongs to the latter category, and
performs the topology fetching without the need for extra



messages. Consequently, the overhead of enabling clustering
in the network can be drastically reduced.

In our approach, the cluster construction is separated from
the routing layer, and standard routing is therefore maintained.
The approach taken by [5]–[7] on the other hand, forces all
traffic to be routed via the cluster-heads, which is not always
in the shortest path between an arbitrary node and the sink.
This is a suboptimal solution for heterogeneous networks
containing several sensor types. In surveillance systems for
example, all sensor nodes can contain passive IR, sound and
vibration sensors to detect and track a target, while a few
nodes are equipped with a digital camera or active IR for
target verification. Our approach supports such applications
using policy-based routing. Alarms and measurements are
considered easy to aggregate (homogeneous data) and can
be routed directly to the designated cluster-head, which is
responsible for data aggregation (to reduce data transmissions)
or filtering (to reduce the false alarm rate). Meanwhile, data
from special purpose sensors, such as imaging sensors, can not
be aggregated and should therefore follow the shortest pathto
the sink.

In this paper, we study both centralized and distributed
clustering methods and examine the use of two different
routing protocols to obtain the topology information. The
proposed schemes are:

1) OLSR distributed scheme.
2) OLSR centralized scheme.
3) DYMO-low centralized scheme.
In the next two sections we describe how to combine EB-

clustering with these routing alternatives.

IV. OLSR SCHEMES

A. Introduction

Optimized Link State Routing (OLSR) [10] is proposed
by the IETF aiming at Mobile Ad-hoc Networks (MANET).
Although OLSR is seldom considered viable for sensor net-
works due to its proactive behavior and the possibly large
routing table, we argue that some classes of WSNs may
benefit from the use of OLSR. OLSR has gained considerable
popularity because of its versatility and extensibility, and
simple extensions can provide several attractive features, such
as e.g., multicast, multiple interfaces and service discovery.
If such features are needed in the WSN, using OLSR may
simplify the design compared to adding these features on top
of a less advanced protocol.

For our purpose, OLSR provides the attractive feature that
each node keeps an updated view of the network topology.
This feature can be used to determine clusters in the network
in a distributed fashion, as described in the next section.

B. OLSR distributed scheme

The OLSR distributed schemeemploys the OLSR routing
protocol repositories on each of the nodes to gain information
about the network topology. This information is then used to
determine the network clusters locally using EB-clustering.
The challenge with this approach is that it relies on consistent

cluster calculation in the network. To ensure that all the
nodes determine exactly the same clusters, each node needs
to obtain accurate topology information. However, if default
OLSR settings are used, only partial link-state can be obtained.

The partial link-state in OLSR is caused by the intention to
limit the communication overhead by reducing the number of
links advertised and the number of nodes that advertises them.
Using default OLSR settings, only nodes chosen as MultiPoint
Relays (MPRs) create topology control (TC) messages. A
TC message only contains the advertised link set of a node
limited to its MPR selector set. Hence, all neighbors will not
be reported in the TC message, and for our purpose, this
means that the entire topology (including all links) cannotbe
detected. Consequently, exact and consistent cluster determi-
nation cannot be ensured.

Mechanisms to extend the network topology knowledge
in OLSR are previously studied in [11] and [12]. In [11],
the authors investigate different options by tuning the MPR-
Coverage settings and by increasing the amount of information
in each TC message. One way to let an MPR report all
links is to alter theTC_REDUNDANCY parameter from TC0
to TC 2. By doing this, the advertised link set of the node
include the full neighbor link set. However, as pointed out in
[12], the nodes generating TC messages are not constrained
to MPRs only when using this setting. The authors therefore
suggest applying TC generation with full link set only to
those nodes that are selected as an MPR by another node.
This new proposed setting is named TC4 (this term is
also applied in our research). Notice that if a link exists
between two non-MPR nodes, its existence is not reported
in any TC messages. This can be resolved by changing the
MPR-coverage setting, as proposed in [11]. By altering this
parameter a node can increase the preferred number of MPRs
in its MPR set increasing the probability that all links are
reported.

To verify the performance of the distributed clustering
scheme, we examine the consistency of the identified clusters
while altering theTC_REDUNDANCY parameter.

C. OLSR centralized clustering scheme

The centralizedclustering scheme solves the beforemen-
tioned cluster consistency issue. In this case, the clusters are
determined by employing EB-clustering at the sink node only.
The partial link-state of OLSR is not critical since each node
will unambiguously belong to one single cluster. The drawback
of this approach is that a separate protocol is needed to elect
and inform cluster-heads and to tell each node which clusterit
belongs to. However, this can be solved either by creating an
OLSR extension, or using a simple application layer protocol.

It is worth noting that distributed protocol designs are
traditionally preferred before centralized designs in networking
systems due to the fault tolerance and lack of scalability of
the latter approach. We argue that in most WSNs, the sink
node is already a single point of failure. The fault tolerance is
therefore not increased by centralizing the clustering algorithm
[13]; in fact, this approach simplifies the protocol design and



the implementation. Further, the scalability of the centralized
algorithm is not a big concern compared to a distributed
design, as the sink node can be equipped with several orders
of magnitude more memory and CPU than the sensor nodes.

V. DYMO- LOW SCHEME

In the DYMO-low centralized scheme, we propose a few
modifications to the DYMO-low routing protocol [14] to fetch
topology information and to facilitate centralized clustering.
DYMO-low is intended for use on IEEE 802.15.4 devices and
is based on the principle of flooding route requests (RREQ)
and unicasting route replies (RREP) as known from AODV
and DYMO. However, DYMO-low is considerably simplified
to better match the limitations of 802.15.4.

Our extension introduces two new messages to the protocol,
Topology Route Request (TRREQ) and Topology Route Reply
(TRREP). As with the centralized OLSR scheme, the sink
node performs the EB-clustering calculation, and a separate
protocol is employed to elect and inform the cluster-heads.The
difference between this approach and the OLSR centralized
approach is that DYMO-low is a reactive protocol and does
not disseminate routing information regularly as is the case
with OLSR. This can save considerable bandwidth if the
proactive behavior of OLSR is not needed. Another benefit
with this approach compared to OLSR is that our DYMO-
low implementation can providefull topology information,
whereas OLSR does not provide this without implementing
the beforementioned extensions, with the penalty of increased
OLSR overhead. The protocol operation consists of a request
phase and a reply phase.

The sink first initiates the network by announcing its address
via a TRREQ. This message can be seen as a proactive route
request destined toall nodes in the network. The TRREQ
is flooded similarly as a regular DYMO-low routing request
(RREQ), and the nodes which receive the TRREQ, retransmits
the packet only once. This means that all nodes will receive
a copy of the TRREQ from each of its neighbors. When a
node receives a TRREQ packet, it stores the address of its
neighbor. As the TRREQ disseminates from the sink to the
entire network, all nodes will eventually obtain a list including
each of its one-hop neighbors with no more cost than a regular
Route Request process.

Upon receiving a TRREQ packet, a node responds back
to the sink using a TRREP. This transmission takes place
after a random time delay to avoid network congestion and
collisions. The response message extends the regular Route
Reply defined in DYMO-low, with a list of the one-hop
neighbors. The sink will eventually receive TRREPs from all
the sensor nodes in the network. EB-clustering will then use
this information to determine the clusters. Note that each link
in the network is reported twice (once from each link end). The
duplicated information can enable reconstruction of missing
TRREP information.

It can be argued that this approach cannot be classified
as passive clustering since we alter the routing protocol to
fetch the topology. However, our extension in fact reduces the

Fig. 2. The main scenario used in the simulation and analysis.

number of control messages compared to standard DYMO-
low. After a complete request/reply phase, all nodes in the
network have a valid route to the sink, making them ready to
perform their sensing task immediately. If standard DYMO-
low is used, route requests must be initiated from each node
in the network to accomplish this. This leads to a tremendous
overhead due to the flooded route requests. Our approach, on
the contrary, limits this to justonesink-initiated route request
and considerably reduces the number of messages flooded in
the network. The request/reply and EB-clustering process can
be initiated either automatically or by a network operator.

VI. RESULTS AND ANALYSIS

The motivation behind the simulations in this section is
threefold. First, we analyze the accuracy of the topology
knowledge in OLSR and how inaccuracies affect the cluster
consistency for distributed clustering. Second, we compare the
overhead posed by the different schemes. Finally, we study
the energy savings by employing the clustering scheme con-
sidering different cluster-head election strategies, anddifferent
distances between a target (sensed by the WSN) and the sink.
We compare EB-clustering with K-means clustering.

We implemented the DYMO-low Internet Draft in the NS-
2.34 network simulator and added the proposed extensions
to the protocol to enable neighbor detection and reporting.
For the OLSR experiments, we used UM-OLSR [15], which
we modified to provide extended topology knowledge. The
clustering methods were implemented using iGraph. Unless
otherwise mentioned, default OLSR settings were used. IEEE
802.11 DCF was used as the MAC protocol.

Two scenarios were created for the testing and analysis.
The initial setup (scenario 1) consists of 200 nodes aligned
along a virtual road, see Fig. 2. The inter-node distance is
40m horizontally and 20m vertically, covering a total area of
20x3960m. The transmission range is set to 100m. Scenario 2
is a small modification of Scenario 1 made by removing the
nodes4, 8, 12 . . .96. Scenario 2 in this way provides a layout
with defined groups of nodes.

A. Topology knowledge and cluster consistency

First we consider only Scenario 1 and employ OLSR
routing. Fig. 3 shows the average accuracy of the topology
knowledge at each of the nodes. When using default OLSR,
topology knowledge accuracy was only 35%. Using TC2, the
accuracy increased to 90%, while with TC4, the accuracy was
75%. These results correspond to those presented in [12]. The
reduced topology knowledge observed at the network ends



Fig. 3. Accuracy of topology knowledge in the network

TABLE I
PERFORMANCE OF THE SCHEMES. DIFFERENTOLSRDISTRIBUTED

CLUSTERING COMPARED WITHDYMO-LOW CENTRALIZED CLUSTERING.

Protocol Top-know Overhead Clust-cons1 Clust-cons2
OLSR TC 0 35% 39.5 KB/s 88.9% 91.1%
OLSR TC 2 90% 76.7 KB/s 96.3% 96.0%
OLSR TC 4 75% 58.1 KB/s 90.6% 93.4%

DYMO low 100% 483KB/round (100%) (100%)

(i.e., the nodes 0,99,100,199) is caused by collisions (andloss
of topology information) in the center of the network. As a
comparison, when running the centralized DYMO-low scheme
100% accuracy is achieved in the same scenario.

We now examine how the topology inaccuracies affect the
consistency of the clusters when EB-clustering is employed
on each node. To compare the communities detected at the
different nodes, we represent the node-to-cluster memberships
in matrixes, and compare the matrixes created at each of
the nodes. Due to different topology knowledge, a small
percentage of the detected cluster memberships differ among
the nodes. The values in table I show the percentage of the
detected cluster membership information that is equal among
all nodes. There is a tendency that local information is correct,
and the membership inconsistencies are on distant clusters
only. EB-clustering here works remarkably well even with
limited OLSR topology knowledge, but increasing the topol-
ogy knowledge further improves the clustering consistency.
An input scenario with more clearly defined groups (Scenario
2) also leads to more consistent clusters. This is caused
by the fact that EB-clustering creates communities based on
counting the number of shortest paths going through each link
(betweenness-score), and this scenario has more links with
salient betweenness-score.

When clustering is employedcentrally, the reduced topol-
ogy accuracy is not crucial. Even with standard OLSR, our
experiments show that the clusters fit the physical layout of
the nodes well, although not as accurate as with increased
OLSR topology knowledge or by using DYMO-low.

B. Overhead

Table I also show the overhead for the different routing
alternatives. As the OLSR protocol exchanges control mes-

Fig. 4. Number of hops as a function of distance between a detected event
and the sink.

sages periodically, overhead is almost constant regardless of
the lifetime of the clusters and the rotation of the cluster-heads.
For DYMO-low, messages are only sent when the clusters
are regenerated (referred to as oneround1). For DYMO-
low, all TRREQ and TRREP transmissions for one round
are included in the measures. We also let CHs flood their
existence to the network using TRREQs. The results show that
the centralized DYMO-low protocol leads to the best clusters
(full topology is obtained) and also the smallest overhead in
scenarios with slow CH rotation (> 12s). We assume that
the distributed clustering scheme may be efficient in mobile
networks, which require frequent regeneration of the clusters
and where network partitions prohibit centralized control.

C. Data aggregation

Next, we evaluate the clustering scheme considering dif-
ferent cluster-head election strategies, and different distances
between a target (sensed by the WSN) and the sink. We extend
Scenario 1 to include a vehicle that moves along the WSN,
and apply DYMO-low centrally. Sensor nodes detecting the
vehicle transmit this information to the cluster-head in its
cluster. Most clustering schemes in the literature employ a
round-robin scheme to alternate the role of the CH to balance
the energy consumption. We find it interesting to examine the
performance of EB-clustering with extreme CH placements.
The optimal CH placement is found when the elected CH-
node is the node in the cluster that minimizes the average
number of hops between a node in the cluster and the sink,
while the worst is found when this number is maximized.

Fig. 4 shows the number of hops necessary to transmitone
sensor reading using standard routing, compared with EB-
clustering with worst and best CH. This is compared with
K-means using centroid CHs (k is predefined to match the
cluster number proposed by EB-clustering). We observe that
electing the optimal CH nodes hardly increases the path-length
compared to standard routing, while the worst placements
increases the path length considerably. Uniform rotation of

1If the topology has changed between two rounds, a new set of clusters is
generated. The optimal round frequency depends on the expected data traffic
and link stability and is not studied in this paper.



Fig. 5. Energy consumption as a function of distance betweena detected
event and the sink. Bars indicate worst and best cluster-head placements.

cluster-heads results in an average of 32% increase in the
path length. K-means gives similar average path lengths as
EB-clustering. In a real implementation we anticipate that
K-means gives longer paths than EB-clustering, since the
network topology not always reflect the geographical positions
of the sensor nodes (cf. Fig. 1).

Now we focus on the same setup, but apply in-network data-
aggregation at the CHs. We apply the term Degree of Aggre-
gation (DoA) from [1], representing the number of messages
that the CH receives and aggregates before transmitting data
to the sink. DoA depends on the sensing range, the network
density, and the signature of the tracked object. The effect
of manipulating DoA is shown in Fig. 5. As seen in the
figure, the benefit of employing clustering is limited when
the detected object is close to the sink and the DoA is low.
However, assuming that an event can occur (i.e., a vehicle or
intruder is detected) at any position along the network, a DoA
of 4 and uniform CH placement, 49% energy reduction can
be expected. K-means produce comparable results.

Since an EB-clustering node (be it central or distributed)
has full knowledge ofall clusters in the network, the above
result can be optimized. Instead of letting the aggregationrole
rotate among the cluster members only, we instead exploit
nodes from the upstream neighbor cluster. This eliminates the
problem of routing packets in the wrong direction. In Fig. 6
we apply rotation only among border-nodes. Here, a DoA of
4 gives an average reduction of 58%. Even a modest DoA
of 2, gives an average energy reduction of 36% compared to
standard routing.

VII. C ONCLUSIONS

We have proposed a method to use the edge-betweenness
community detection algorithm to determine the clusters and
to facilitate in-network data aggregation in roadside sensor
networks. The method omits the need for exact geographical
positions as in K-means. We have presented both centralized
and distributed designs, and results show that clusters can
be generated in a consistent way, even with reduced OLSR
topology knowledge. The best results are obtained using
centralized clustering and our DYMO-low routing protocol

Fig. 6. Energy consumption as a function of distance betweena detected
event and the sink. Bars indicate min/max.

scheme. The average energy reduction is 20–62% compared
to standard routing, and outperforms K-means. Future works
include synchronizing idle-listening within the clustersand
implementing the protocols in a test bed.
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