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Abstract—Wireless Sensor Networks are proven highly success- are likely to be inaccurate and have a small probability of
ful in many areas, including military and security monitoring.  falsely reporting events that are not actually present.
In this paper, we propose a method to use the edge—betweenses The contributions of this paper include: (1) A data aggrega-

community detection algorithm to determine clusters and to fi h based d bet itv d i
facilitate in-network data aggregation for these applicatons. To lon scheme based on edge—betweenness community defection

minimize the cost of determining the clusters, the approach (2) three different routing protocol schemes supportinghbo
is based on exploiting the topology information from the ad centralized and distributed clustering, (3) modificatiamd a
hoc routing protocol. Three different schemes are proposed jmprovement of the DYMO-low routing protocol, and (4), a
(1) A distributed clustering scheme using the OLSR routing quantification of the trade-off between cluster-aggreyssind

protocol. (2) A centralized scheme using OLSR. (3) A centrated traditi | fi d . f h i th
scheme using an extension to the DYMO-low routing protocol. radiional routing, and a comparison ot our schemes wi

All schemes support sensor heterogeneity allowing that digrent  Well-known K-means clustering. Although we mainly focus
data content can use different routing paths. The paper presnts on roadside surveillance networks, our protocols, recomme
simulation results and an analysis of the cluster generatio for  dations and results are also viable to other classes of senso
each of the schemes. The results show that our method is apanyorks that are topologically similar to our scenario.

simple and effective method to improve scalability and liféme . o
of roadside sensor networks. Before presenting our own scheme and results, it is worth

Index Terms—Clustering, Data Aggregation, Wireless Sensor reviewing some of the preceding work regarding data aggre-
Networks gation in WSN.

|. INTRODUCTION Il. RELATED WORK

Wireless Sensor Networks (WSNs) are proven effective in Different data-aggregation alternatives can be categdriz
the fields of perimeter security and military surveillandg. [ based on the network architecture involved in the aggregati
In these areas, great benefit can be achieved by using cowdrich can be structured either as a chain, a tree, or by ctuste
miniaturized sensors, as they are difficult to avoid by ajpbss  Chain-basedaggregation schemes create linear chains for
intruder and less subject to vandalism or theft compared data-aggregation. Each node in the chain only transmits to
traditional sensor systems. Further, the redundancy dgiyen its closest neighbor, which fuses the data with its own mea-
ad hoc network protocols improves reliability compared teurements, and retransmits along the chain. In PEGASIS [2],
previous systems. However, WSNs face two basic challeng® chains can be made either centrally or distributede-
energy efficiencydue to the battery powered sensors, anghseddata aggregation on the other hand, organizes the nodes
scalability, due to a potential high number of devices needirig an aggregation tree rooted at the sink. Directed Diffasio
to interoperate. The goal of this paper is to provide a meth@@] is one such example. If only a subset of the nodes in
to solve these two issues by the means of in-network ddte network are sensing nodes, tree based techniques @rovid
aggregation. better performance than chain-based since the aggregation

Data aggregation is particularly interesting for roadsideee is better than the chain for mere packet routing. For
surveillance systems. In such systems, the sensor nodes both strategies, the aggregation delay perceived by a rode i
laborate in detecting events such as movement and particddased on its position in the aggregation tree (or chain). The
behavior of objects along the road. Multiple nodes are heogerall aggregation delay therefore increases drastieeth
likely to sense the same event simultaneously. Converitiotfae number of nodes in the network [4]. The challenge is to
routing treats these sensor readings individually andrigmo balance the trade-off between energy efficiency and theydela
the redundant and highly correlated nature of the data. Tipesed by the aggregation. Both tree-based and chain-based
leads to ineffective use of the scarce energy and limitedjgregations are best suited for scenarios whdéraodes in
channel resources. By employing data aggregation, designahe network produce relevant informatigreriodically. For
aggregation nodes can wait for multiple reports, eithenftbe our event-initiated scenario, these proposals are inadequ
same node (temporal redundancy), or from neighboring nod®sce the long aggregation delay makes it difficult to unigue
(spatial redundancy), before reporting about the evenh¢o tdistinguish separate events.
sink. This strategy not only reduces the traffic consideydduit Cluster-basedschemes organize the sensor nodes into vir-
also reduces the probability of false alarms, as most senstal groups and perform aggregation only at designatedectus



B. Edge—betweenness community detection

Edge-betweenness community detection is a method pro-
posed by Newman and Girvan [8]. Community detection algo-
rithms are known from physics literature, (i.e., a commyist
a region of the network with dense connections) and have been
successfully used to capture interactions in ad hoc network
[9]. The algorithm tries to find the communities of the netlwor
with the maximum modularity value. The modularity measure

is based on the formul@ = i (esi — a?) wherem is the
=0

Fig. 1. Edge-betweenness clustering (left) takes the ¢gpointo account
while K-means (right) use mere geographical positions fostering.

] ) ) number of detected communiﬁes,» represents the fraction of
heads (CHs). This approach drastically reduces the agiegajins in the network that connect the nodes in commuiity
delay compared to the chain and tree architectures, at 8te ¢, represents the fraction of links that connect two nodes
of possn?ly_longer routing paths. Notice that cluster sceem;, communityi. The algorithms proposed by Newman and
are not limited to aggregation only. LEACH [5] for examplegiryan [8] all find good approximations for the maximum
uses clustering both as a tool to aid data aggregation andy{gqularity. The algorithm&B) searches for the division of
coordinate access of the wireless channel within the alustg,e network with the greatest modularity value by removing

LEACH only supports single-hop transmission between eaghys with high importance in the network (see Algorithm 1).
cluster-head and the sink, making the approach invalid ior o

purpose. Lai et al. have recently extended LEACH by allowm,éilgorithm 1 Edge-betweenness
multihop transmissions and by better balancing the energ‘é ©

consumption [6]. Gong et al. [7] takes a different approauth a NG —g

propose to use modified K-means clustering, and determine% fo;i — 1)L

the clusters centrally assuming that the geographicatipnosi a) G = {G'\{es}|b: = maz (betweenness (G'))}
of the nodes are known. We describe this method and compare P; = {connected (b/)} '
it to ours in the subsequent sections. b) Qi = Q(P;)

While [5]-[7] use explicit control messages to initiate the 3) return {P; | | = max (Q:)}
clusters, our scheme has the ability to passively explat th
underlying routing protocol to gain topology knowledge.-An
other key difference is that the above methods require that &
traffic must pass through the cluster-head, while our aggro
allows some traffic classes to take an optional (shorteﬂ;t}pas
route towards the sink.

The algorithm recursively computes the betweenness score
each link in £ defined by the number of shortest paths
oing through a link. The link with the highest betweenness
core is removed from the graph, and the modularity value is
recomputed. The algorithm is applied until there are no more
links left. The communities are determined by the partiidn

I1l. CLUSTERING network obtained in the step with the maximum modularity
value.
A. K-means As opposed to most existing clustering methods, EB-

K-means is a classical and simple method for clustering tHa'Stering does not put any a priori constraints on the efust

has been applied to several problem domains, includingsenSiructures (e.g., cluster diameter, number of nodes in steslu
networks, as demonstrated by Gong et al. [7]. or number of clusters). While K-means requires that a local-
When applied to sensor node clustering, the procedure is'%%t'on scheme is present in the ngtwork, EB-clusteriny onl
ies on the network topology. Notice that K-means assumes

follows: (1) th ber of clusters must be predetermined.'® ) . :
ollows: (1) the number of cluster must be predetermine at geographically adjacent nodes also are 1-hop neighbor

(2) k points are placed in the geographical space represen% ? Ol h ; works. As h
by the nodes being clustered. These points represent thieclu, IS 1S Not always e case or Sensor NEWorks. AS Shown
Fig. 1, this assumption can lead to suboptimal clusteds an

centroids. (3) Each node is assigned to the cluster with the )

closest centroid (in terms of Euclidian distance). (4) Thglcessive paths between cluster members and the cluster-he

positions of thek centroids are recalculated as the mass center ) ) )

of each cluster. Then, (3-4) are repeated until the cergnoad C. Fetching topology information

longer move. In [7], the nodes with the minimum distance to The prerequisite for EB-clustering is to have an updated

the cluster centroid and highest residual energy are elete view of the network topology. Such information can either

cluster-heads. be obtainedactively by exchanging explicit control messages
While this algorithm outperforms LEACH, its disadvantagbetween the nodes, opassively by taking advantage of

is that the number of clusters must be predetermined (aformation available by consulting the underlying rogtin

estimated), and that the exact geographical position of theotocol. Our approach belongs to the latter category, and

nodes must be known. performs the topology fetching without the need for extra



messages. Consequently, the overhead of enabling chistedluster calculation in the network. To ensure that all the
in the network can be drastically reduced. nodes determine exactly the same clusters, each node needs

In our approach, the cluster construction is separated framobtain accurate topology information. However, if dédfau
the routing layer, and standard routing is therefore maieth OLSR settings are used, only partial link-state can be pbthi
The approach taken by [5]-[7] on the other hand, forces all The partial link-state in OLSR is caused by the intention to
traffic to be routed via the cluster-heads, which is not avajimit the communication overhead by reducing the number of
in the shortest path between an arbitrary node and the sifikks advertised and the number of nodes that advertises.the
This is a suboptimal solution for heterogeneous networkising default OLSR settings, only nodes chosen as MultiPoin
containing several sensor types. In surveillance systams Relays (MPRs) create topology control (TC) messages. A
example, all sensor nodes can contain passive IR, sound i@ message only contains the advertised link set of a node
vibration sensors to detect and track a target, while a fdimited to its MPR selector set. Hence, all neighbors wilt no
nodes are equipped with a digital camera or active IR fowe reported in the TC message, and for our purpose, this
target verification. Our approach supports such applinatiomeans that the entire topology (including all links) canbet
using policy-based routing. Alarms and measurements atetected. Consequently, exact and consistent clusterndiete
considered easy to aggregate (homogeneous data) and retion cannot be ensured.
be routed directly to the designated cluster-head, which isMechanisms to extend the network topology knowledge
responsible for data aggregation (to reduce data trangEm&s in OLSR are previously studied in [11] and [12]. In [11],
or filtering (to reduce the false alarm rate). Meanwhile adathe authors investigate different options by tuning the MPR
from special purpose sensors, such as imaging sensorsptarQoverage settings and by increasing the amount of infoonati
be aggregated and should therefore follow the shortesttpattin each TC message. One way to let an MPR report all
the sink. links is to alter theTC_REDUNDANCY parameter from TQD

In this paper, we study both centralized and distributed TC 2. By doing this, the advertised link set of the node
clustering methods and examine the use of two differeiniclude the full neighbor link set. However, as pointed aut i
routing protocols to obtain the topology information. Th§12], the nodes generating TC messages are not constrained

proposed schemes are: to MPRs only when using this setting. The authors therefore
1) OLSR distributed scheme. suggest applying TC generation with full link set only to
2) OLSR centralized scheme. those nodes that are selected as an MPR by another node.
3) DYMO-low centralized scheme. This new proposed setting is named “HC(this term is
In the next two sections we describe how to combine E@BIs0O applied in our research). Notice that if a link exists
clustering with these routing alternatives. between two non-MPR nodes, its existence is not reported
in any TC messages. This can be resolved by changing the
IV. OLSR SCHEMES MPR- cover age setting, as proposed in [11]. By altering this
A. Introduction parameter a node can increase the preferred number of MPRs

Optimized Link State Routing (OLSR) [10] is proposeéln its MPR set increasing the probability that all links are
by the IETF aiming at Mobile Ad-hoc Networks (MANET). reported.
Although OLSR is seldom considered viable for sensor net- 10 Verify the performance of the distributed clustering
works due to its proactive behavior and the possibly |ar9$@heme, we examine the consistency of the identified chister
routing table, we argue that some classes of WSNs mgdile altering theTC_REDUNDANCY parameter.
benefit from the use of OLSR. OLSR has gained consideralée
popularity because of its versatility and extensibilityyda ) )
simple extensions can provide several attractive featstesn 1€ centralizedclustering scheme solves the beforemen-
as e.g., multicast, multiple interfaces and service disgpy tioned cluster consistency issue. In this case, the chisber
If such features are needed in the WSN, using OLSR mé&g@termined by employing EB-clustering at the sink node .only
simplify the design compared to adding these features on tbpe partlal_ link-state of OLSR is n_ot critical since each aod
of a less advanced protocol. will unambiguously belong to one single cluster. The draskba
For our purpose, OLSR provides the attractive feature tH2itthis approach is that a separate protocol is needed to elec
each node keeps an updated view of the network topologjid inform cluster-heads and to tell each node which cluster
This feature can be used to determine clusters in the netw&fK0ngs to. However, this can be solved either by creating an

in a distributed fashion, as described in the next section. OLSR extension, or using a simple application layer protoco
It is worth noting that distributed protocol designs are

B. OLSR distributed scheme traditionally preferred before centralized designs irwaeking

The OLSR distributed schemamploys the OLSR routing systems due to the fault tolerance and lack of scalability of
protocol repositories on each of the nodes to gain inforonatithe latter approach. We argue that in most WSNSs, the sink
about the network topology. This information is then used twode is already a single point of failure. The fault toleaie
determine the network clusters locally using EB-clusigrintherefore not increased by centralizing the clusteringritigm
The challenge with this approach is that it relies on coanist [13]; in fact, this approach simplifies the protocol desigml a

OLSR centralized clustering scheme



the implementation. Further, the scalability of the cditea

algorithm is not a big concern compared to a distribute
design, as the sink node can be equipped with several ord *™
of magnitude more memory and CPU than the sensor nod |,

7198

V. DYMO-LOW SCHEME ' 3960m

In the DYMO-low centralized scheme&ve propose a few
modifications to the DYMO-low routing protocol [14] to fetch
topology information and to facilitate centralized clustg.
DYMO-low is intended for use on IEEE 802.15.4 devices anfumber of control messages compared to standard DYMO-
is based on the principle of flooding route requests (RRE@w. After a complete request/reply phase, all nodes in the
and unicasting route replies (RREP) as known from AOD¥etwork have a valid route to the sink, making them ready to
and DYMO. However, DYMO-low is considerably simplifiedperform their sensing task immediately. If standard DYMO-
to better match the limitations of 802.15.4. low is used, route requests must be initiated from each node

Our extension introduces two new messages to the protogalthe network to accomplish this. This leads to a tremendous
Topology Route Request (TRREQ) and Topology Route Repdyerhead due to the flooded route requests. Our approach, on
(TRREP). As with the centralized OLSR scheme, the sinke contrary, limits this to jusbnesink-initiated route request
node performs the EB-clustering calculation, and a separahd considerably reduces the number of messages flooded in
protocol is employed to elect and inform the cluster-he@tls. the network. The request/reply and EB-clustering process ¢
difference between this approach and the OLSR centralizZgd initiated either automatically or by a network operator.
approach is that DYMO-low is a reactive protocol and does
not disseminate routing information regularly as is theecas VI. RESULTS AND ANALYSIS
with OLSR. This can save considerable bandwidth if the The motivation behind the simulations in this section is
proactive behavior of OLSR is not needed. Another benefiireefold. First, we analyze the accuracy of the topology
with this approach compared to OLSR is that our DYMOknowledge in OLSR and how inaccuracies affect the cluster
low implementation can providéull topology information, consistency for distributed clustering. Second, we com iz
whereas OLSR does not provide this without implementingverhead posed by the different schemes. Finally, we study
the beforementioned extensions, with the penalty of irseéa the energy savings by employing the clustering scheme con-
OLSR overhead. The protocol operation consists of a requeRiering different cluster-head election strategies, diffdrent
phase and a reply phase. distances between a target (sensed by the WSN) and the sink.

The sink first initiates the network by announcing its adsiregVle compare EB-clustering with K-means clustering.
via a TRREQ. This message can be seen as a proactive routd/e implemented the DYMO-low Internet Draft in the NS-
request destined tall nodes in the network. The TRREQ2.34 network simulator and added the proposed extensions
is flooded similarly as a regular DYMO-low routing requesto the protocol to enable neighbor detection and reporting.
(RREQ), and the nodes which receive the TRREQ, retransirfiisr the OLSR experiments, we used UM-OLSR [15], which
the packet only once. This means that all nodes will receivee modified to provide extended topology knowledge. The
a copy of the TRREQ from each of its neighbors. When @ustering methods were implemented using iGraph. Unless
node receives a TRREQ packet, it stores the address ofgtherwise mentioned, default OLSR settings were used. IEEE
neighbor. As the TRREQ disseminates from the sink to ti892.11 DCF was used as the MAC protocol.
entire network, all nodes will eventually obtain a list inding Two scenarios were created for the testing and analysis.
each of its one-hop neighbors with no more cost than a regufdfe initial setup (scenario 1) consists of 200 nodes aligned
Route Request process. along a virtual road, see Fig. 2. The inter-node distance is

Upon receiving a TRREQ packet, a node responds bag8m horizontally and 20m vertically, covering a total ardéa o
to the sink using a TRREP. This transmission takes plagex3960m. The transmission range is set to 100m. Scenario 2
after a random time delay to avoid network congestion aligla small modification of Scenario 1 made by removing the
collisions. The response message extends the regular Rawddes4, 8,12...96. Scenario 2 in this way provides a layout
Reply defined in DYMO-low, with a list of the one-hopwith defined groups of nodes.
neighbors. The sink will eventually receive TRREPs from all )
the sensor nodes in the network. EB-clustering will then uée Topology knowledge and cluster consistency
this information to determine the clusters. Note that eadh |  First we consider only Scenario 1 and employ OLSR
in the network is reported twice (once from each link ende Throuting. Fig. 3 shows the average accuracy of the topology
duplicated information can enable reconstruction of migsi knowledge at each of the nodes. When using default OLSR,
TRREP information. topology knowledge accuracy was only 35%. Using Z(Cthe

It can be argued that this approach cannot be classifiadcuracy increased to 90%, while with T4 the accuracy was
as passive clustering since we alter the routing protocol 16%. These results correspond to those presented in [18]. Th
fetch the topology. However, our extension in fact redubes treduced topology knowledge observed at the network ends

Fig. 2. The main scenario used in the simulation and analysis
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TABLE |
PERFORMANCE OF THE SCHEMESDIFFERENTOLSRDISTRIBUTED

CLUSTERING COMPARED WITHDYMO-LOW CENTRALIZED CLUSTERING . . .
sages periodically, overhead is almost constant regarales

Protocol | Top-know | Overhead | Clustconsl | Clust-cons2  the lifetime of the clusters and the rotation of the clusteads.
OLSRTCO 35% 39.5 KB/s 88.9% 91.1% For DYMO-low, messages are only sent when the clusters
OLSR TG.2 90% 76.7 KB/s 96.3% 96.0%  are regenerated (referred to as omeind). For DYMO-
OLSRTCA 5% 58.1 KBIS 90.6% 93.4% low, all TRREQ and TRREP transmissions for one round

DYMO_low [ 100% [ 483KB/round| (100%) [ (100%)

are included in the measures. We also let CHs flood their
existence to the network using TRREQs. The results show that
the centralized DYMO-low protocol leads to the best cluster
6{full topology is obtained) and also the smallest overherd i
scenarios with slow CH rotation>( 12s). We assume that

comparison, when running the centralized DYMO-low SChen}ﬁe distributed clustering scheme may be efficient in mobile

100% accuracy is achieved in the same scenario. ) . .
; . . networks, which require frequent regeneration of the ehsst
We now examine how the topology inaccuracies affect the . oS .
: L and where network partitions prohibit centralized control
consistency of the clusters when EB-clustering is employed
on each node. To compare the communities detected at hepata aggregation

different nodes, we represent the node-to-cluster merhipars

in matrixes, and compare the matrixes created at each mNeXt' we evaluate the clustering scheme considering dif-
i};ent cluster-head election strategies, and differestdces

the nodes. Due to different topology knowledge, a sm f d by the WSN) and the sink. W d
percentage of the detected cluster memberships differ gm tween a target (sensed by the ) and the sink. We exten

the nodes. The values in table | show the percentage of genario 1 to include a vehicle that moves along the WSN,

detected cluster membership information that is equal ayno"f\nd apply DYMO-low centrally. Sensor nodes detecting the

all nodes. There is a tendency that local information iseirr vehicle transmit this information to the cluster-head is it
and the membership inconsistencies are on distant clustgl%Ster' M_OSt clustering schemes in the literature employ a
only. EB-clustering here works remarkably well even witﬁound'mb'n scheme to alternate the role of the CH to balance
limited OLSR topology knowledge, but increasing the topoF—he energy consumption. We fmo! itinteresting to examine the
ogy knowledge further improves the clustering consistenl:%en‘orm‘f’mmle gf EE’;-cIusterlng V¥'th thrime Ch:H pllacergecnts.
An input scenario with more clearly defined groups (Scenar (pe optlma H pgcement IS tound when t e electe H-
2) also leads to more consistent clusters. This is caused® 'S the node in the cluster that minimizes the average
by the fact that EB-clustering creates communities based 3 r_r|1berr] of hops_ bfetwe;zn ﬁ no?f n theb cIu_ster af‘d.th‘; sink,
counting the number of shortest paths going through ea&h iy |_et € \r/]vorst 'E oun bW e?; IS nUMDET 1S maximized.
(betweenness-score), and this scenario has more links witf{'9- 4 Shows the number of hops necessary to transnat
salient betweenness-score. sensor reading using standard routing, compared with EB-
When clustering is employecentrally, the reduced topol- clustering W'_th worst qnd best.CH. Th'? is compared with
ogy accuracy is not crucial. Even with standard OLSR, olfrmeans usgng centr0|ddCl3)Hsk (is pl)redefmed to mgtch theh
experiments show that the clusters fit the physical layout BII“Ster number proposed by EB-clustering). We observe that

the nodes well, although not as accurate as with increas%ﬂcnng the optimal CH node_s hardI)_/ increases the pathehen
OLSR topology knowledge or by using DYMO-low. compared to standard routing, while the worst placements
' increases the path length considerably. Uniform rotatibn o

(i.e., the nodes 0,99,100,199) is caused by collisions l@sxl
of topology information) in the center of the network. As

B. Overhead
. . Lf the topology has changed between two rounds, a new seusfets is
Table I also show the overhead for the different rOunngenerated. The optimal round frequency depends on the texbdata traffic

alternatives. As the OLSR protocol exchanges control mesd link stability and is not studied in this paper.



0
" No clluslering e ] No clﬁstering == ‘ ]
EB: DoA=2 —— EB:DoA=2 —
- K-means: DoA=4 ——— s K-means: DoA=4 ———
§ 20 EB: DoA=4 —— - s 20 EB: DoA=4 —— 7
B EB: DoA=6 ——— B EB: DoA=6 ———
2 B 2 S
2 I 8 R
£ 40 \]\\q . L 40 - S S .
5 = s 3 T
> 7] >
on o0
2 2
5 60 | . 5 60 | -
-80 ! 1 1 1 1 [ -80 1 I I 1 1 1 ]
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Distance to sink (m) Distance to sink (m)
Fig. 5. Energy consumption as a function of distance betweeletected Fig. 6. Energy consumption as a function of distance betwaeeietected

event and the sink. Bars indicate worst and best clustet-p&cements. event and the sink. Bars indicate min/max.

cluster-heads results in an average of 32% increase in fitg@eme. The average energy reduction is 20-62% compared
path length. K-means gives similar average path lengths tgsstandard routing, and outperforms K-means. Future works
EB-clustering. In a real implementation we anticipate th#tclude synchronizing idle-listening within the clusteasd
K-means gives longer paths than EB-clustering, since tffBplementing the protocols in a test bed.

network topology not always reflect the geographical posgi
of the sensor nodes (cf. Fig. 1).

Now we focus on the same setup, but apply in-network datd!
aggregation at the CHs. We apply the term Degree of Aggre-
gation (DoA) from [1], representing the number of messages
that the CH receives and aggregates before transmittirey daf!
to the sink. DoA depends on the sensing range, the network
density, and the signature of the tracked object. The effect
of manipulating DoA is shown in Fig. 5. As seen in the[3]
figure, the benefit of employing clustering is limited when
the detected object is close to the sink and the DoA is low4l
However, assuming that an event can occur (i.e., a vehicle
intruder is detected) at any position along the network, & Do
of 4 and uniform CH placement, 49% energy reduction can
be expected. K-means produce comparable results.

Since an EB-clustering node (be it central or distributed)
has full knowledge ofall clusters in the network, the above [7]
result can be optimized. Instead of letting the aggregatibs
rotate among the cluster members only, we instead expld#]
nodes from the upstream neighbor cluster. This elimindtes t
problem of routing packets in the wrong direction. In Fig. 6i9]
we apply rotation only among border-nodes. Here, a DoA of
4 gives an average reduction of 58%. Even a modest Dc[),%
of 2, gives an average energy reduction of 36% compared Jto]
standard routing. [11]

VII. CONCLUSIONS [12]
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