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ABSTRACT 

Early warning systems based on standoff detection of biological aerosols require real-time signal processing of a large 
quantity of high-dimensional data, challenging the systems efficiency in terms of both computational complexity and 
classification accuracy. Hence, optimal feature selection is essential in forming a stable and efficient classification 
system. This involves finding optimal signal processing parameters, characteristic spectral frequencies and other data 
transformations in large magnitude variable space, stating the need for an efficient and smart search algorithm. 
Evolutionary algorithms are population-based optimization methods inspired by Darwinian evolutionary theory. These 
methods focus on application of selection, mutation and recombination on a population of competing solutions and 
optimize this set by evolving the population of solutions for each generation. We have employed genetic algorithms in 
the search for optimal feature selection and signal processing parameters for classification of biological agents. The 
experimental data were achieved with a spectrally resolved lidar based on ultraviolet laser induced fluorescence, and 
included several releases of 5 common simulants. The genetic algorithm outperform benchmark methods involving 
analytic, sequential and random methods like support vector machines, Fisher's linear discriminant and principal 
component analysis, with significantly improved classification accuracy compared to the best classical method. 

Keywords: standoff bioaerosol measurements, pattern recognition, feature selection, feature extraction, genetic 
algorithms, Bayesian normal classifier. 

 

1. INTRODUCTION 
Today there are several methods for identifying biological substances using microbiological techniques [1]. Although 
these are precise techniques, they are quite slow compared to optical techniques which give response within seconds. 
Efforts to develop equipments for rapid standoff detection of biological substances exist in several nations [2-4]. The 
Norwegian Defence Research Establishment (FFI) has built an experimental lidar [5-6] for the purpose of near real time 
standoff detection and classification of biological aerosols. By analyzing laser-induced fluorescence from different 
biological aerosols, a classifier can detect biological aerosol clouds and potentially classify the threat. A pattern 
recognition system of low classification error rate is demonstrated for data acquired during a field test where five 
different simulants were released: BG (Bacillus Atrophaeus) and BT (Bacillus Thuringensis) as simulants for 
encapsulated bacteria, OV (Ovalbumin) for simulating toxins, MS2 (Bacteriophague MS2) for simulating virus and EH 
(Pantoea Agglomerans) as simulant for vegetative bacteria. 

 

1.1. Feature optimization 

The training of a classifier is based on features, i.e. measured characteristics describing the substances in consideration. 
Hence, the selection of good features is important in terms of classification accuracy. In spectral data analysis the 
objects to classify are the fluorescence spectra (light measurements spanned by channels representing different 
frequency ranges across the spectrum of visible light). In this relation, feature selection aims at localizing the spectral 
ranges of significance, selecting channels able to discriminate the different substances and ignoring the rest. Figure 1 
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shows normalized fluorescence spectra of the five different simulants used in this study and demonstrates frequency 
ranges of dissimilar discriminative ability. 

 

Figure 1: Key fluorescence (normalized) of the five simulants used along with the demonstration of dissimilar discriminative abilities 
in different frequency ranges, motivating feature selection. In ranges a and c the spectra are easier to distinguish than in range b 

having several intersecting points. This indicates that the features are more discriminative in ranges a and c than in range b. 

The high number of spectral channels (112 channels) yields high dimensionality data, making analysis of fluorescence a 
challenging task. This difficulty is shown in Figure 2 by a typical noisy sample of a lidar observation. The optimization of 
feature selection and feature extraction is expected to improve classification accuracy, extracting characteristic 
information from the non-discriminative data of already extracted features. This involves searching for characteristic 
subsets of the channels and other class discriminative transformations of the data sets. 

 

 

Figure 2: Fluorescence of the five simulants (multiple colors) and one lidar observation (red). 

In this paper feature extraction is used as a general transformation of a data set; hence, signal processing can be 
referred to as feature extraction. This can be linear or nonlinear transformations and can result in both down-sampling 
the dimensionality or projecting the data to a higher-dimensional space. The familiar data transformations Principal 
Component Analysis (PCA) [7] and Fisher's Linear Discriminant (FLD) [7] focus on linear combinations of features 
representing each class or discriminating the classes, respectively, and are examples of data transformation methods 
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down-sampling the dimensionality. High-dimensionality projections can be exemplified by Support vector machine 
(SVM) [7], projecting the data to an often much higher-dimensional space where two classes can be discriminated by a 
hyper plane with an optimized distance margin to each class. 

Feature selection is the selection of a subset of the originally provided features. This set is used to train the classifier 
with observational data spanned by the features and is essential for the quality of a classifier, both in improving 
classification accuracy when selecting characteristic features and in down-sampling the dimensionality by ignoring 
specific dimensions of the extracted feature set. Recently, feature selection has been of increased interest as the 
growing computational capacity opens for solving high-complexity problems, involving a large amount of features. 
Moreover, the demand for real-time processing makes limiting of features important for efficient algorithms and are 
often vital within automatic systems.  

 

1.2. Scope and objective 

In this paper we apply genetic algorithms (GAs), an evolutionary search technique, on the combinatorial optimization 
problem of finding an optimal transformation of the dataset. The study involves classification of the five common 
simulants. Background (non-harmful substance) is an additional class, resulting in a 6-categorial classification problem. 
The experimental data used for training and testing the classifier were achieved with a spectrally resolved lidar and 
consist of 112 channels. 

The linear Bayesian normal classifier is used, assuming independently observed samples, multivariate Gaussian class-
densities and equally correlated features for all classes which in practice is the use of the Mahalanobis distance [7] to 
classify a sample. The only known condition as regards the classification problem is that the features of spectral data 
are correlated [8]. Nevertheless, the adaptive algorithm will adjust to these assumptions and calculate the classification 
error to each solution. 

 

1.3. Instrument 

The FFI-developed lidar is based on ultraviolet laser-induced fluorescence. A UV laser pulse at 355 nm is emitted from 
the lidar and backscattered light is collected by a 12ᇱᇱ telescope. The backscattered light collected is focused into an 
optical fiber and transmitted to the spectrally resolved detection system. This system consists of a spectrograph and an 
intensified CCD camera which records the received spectrum between 350 nm and 700 nm after each laser pulse (10 Hz 
pulse rate). The camera has an adjustable gain that can be varied from 0 to 1000 by adjusting the voltage across the 
intensifier stage, and can be rapidly turned on and off for range gating. 

The backscattered light is recorded in 141 spectral channels. Elastic scattering and Raman scattering by atmospheric 
constituents dominate the inelastic scattering (fluorescence) and often lead to saturation. The signal in this spectral 
range (wavelengths shorter than 420 nm) is therefore discarded before the rest of the spectrum is normalized. A typical 
spectrum is shown in Figure 3, indicating the discarded wavelengths below the dotted line. Thus, the data sets contain 
112 channels, corresponding to 2.5 nm per channel. 
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Figure 3: Example of lidar output from 350 to 700 nm. The elastic backscatter signal is damped several orders of magnitude by a 
CG385 color glass. The dotted vertical line shows the lower limit of used fluorescence in this work. 

 

2. FEATURE OPTIMIZATION USING GENETIC ALGORITHMS 

This section aims at explaining methodology concerning feature optimization involving pattern recognition and genetic 
algorithms, one class of evolutionary algorithms. 

 

2.1. Pattern recognition 

Pattern recognition is the act of taking an action based on observed feature measures describing an object. The 
function controlling these actions is the classifier which can be defined based on observations representing the 
different classes. Using this technique we say that the classifier is trained; based on the measured features connected 
to each observed sample (i.e. a fluorescence spectrum) the classifier calculates a density function for each class. 

Let  nx∈R be one observed sample of ݊ measured features. Given a training set *  m n
trainX ∈M  ( *m n -matrix where m

is the number of samples) containing samples describing each of the classes, a classifier 

  :  trainc X Y→  

is created, where Y is the set of real labels connecting each sample in the training set to its respective class. The 
classifier is now trained and able to classifying an arbitrary sample  nx∈R , that is 

 : .nc Y→R  

The selection of a subset of features or a transformed set of features will create a different classifier and will, 
depending on the discriminative quality of the features, probably have classification accuracy different from the one 
utilizing all the available features. The classifier using a subset or transformed set of features is similarly created as 
follows. 

Given a subset of the features  {1, 2, , }s n⊆ … , let ' *| | m s
trainX ∈M  be the transformed training set containing the selected 

features (columns of the original set  trainX ). The classifier is now trained and created as 
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':  .trainc X Y→  

After training, this mapping can classify an arbitrary sample | |  sx∈R , that is, 

 | |:  .sc Y→R  

By comparing estimated labels to the key labels when classifying a second data set (test data) we get the classification 
accuracy utilizing the selected features or feature transformation. 

 

2.2. Decision variable space 

The decision variable space defines the range and restrictions of the transformation search, which aims at improving 
classification accuracy. 

These are selected to be parameters for 

• Channel selection: 
112 {0,1}s∈ , where 1is =  if channel i is selected, and 0  otherwise. 

• Channel binding: 
112  {0,1}b∈ , where 1ib =  if channel i is to be bound to the next channel, and 0  otherwise. Bounded channels 

are simply the mean of the channel signals which form new features. 
• Time integration: 

 {0,1}kt∈ , where t is a k -bit binary number representing interval size for time integration. Let  realt l=  be the 

real number coded by the binary number t . This part of the data transformation integrates the signal in 
intervals of l samples, smoothing the signal. 

Any candidate solution of a transformation is now a specific set (s, b, t) and will aim at selecting characteristic channels 
and increasing the SNR by integrating the signals in frequency and time. These parameters are assumed to be non-
independent; therefore the search for an optimal combination involves a large solution space and most likely a non-
analytic problem structure. In search for the optimal combination we have used genetic algorithms, one of few 
optimization methods able to handle this optimization problem. 

 

2.3. Genetic algorithms 

GAs is one of the most popular classes of evolutionary algorithms [9-10]. These are stochastic optimization methods 
which improve a set of solutions influenced by a quality measure called the fitness function. The optimization process is 
based on the concept of environmental adaptation, the chance for a solution to survive over time. 

The GAs are able to handle large search areas without having to search through all solutions. Guided by the fitness 
function, the evolutionary operators ensure that high performance solutions are preserved over time. These operators 
are selection, crossover and mutation. 

 

2.3.1. Solution representation 

Genetic algorithms use chromosomes for representing solutions, a string (usually) of binary bits coding the parameters 
spanning the decision variable space. Figure 4 gives an example of a chromosome, consisting of the three parameter 
vectors ݏ, ܾ and ݐ which code for a data transformation. The genetic algorithm will evolve a set of these candidate 
solutions over time and seek the optimal parameters which give the best fitness value, in this relation being the 
classification error rate. 
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Through testing and learning, the genetic algorithm can simultaneously optimize the three parameters, guided by the 
fitness function. The pseudo code of the employed optimization algorithm using a genetic algorithm is as follows: 

• Generate an initial population 0P  of N chromosomes and an empty population TQ  of elitesN N− chromosomes 

where elitesN  is the chosen number of elites guaranteed survival for each generation. 

• For each generationT , do 
1. Evaluate fitness of each chromosome  Tc P∈ . 

2. Rank TP  based on fitness. 

3. Copy  elitesN elites (best solutions) from TP  to 1.TP +  

4. Perform selection from TP  to form a parent population of elitesN N− chromosomes, based on fitness 

ranking. Make one copy of the parent population and randomly permute the order of chromosomes in the 
two identical parent populations. 

5. Perform bit-wise crossover by selecting parents in pairs, one from each of the two permutated parent 
populations, and randomly select bits from the two. Save the offspring in TQ . 

6. Mutate the leftover parent solutions from one parent population not being exposed for crossover, and 
save the offspring in  TQ . 

7. Fill the rest of the slots in 1TP +  with the reproduced TQ . 

 

2.3.4. Operators 

Prior to the reproduction of the population, the candidates for reproduction are carefully selected by the selection 
operator. The selection is influenced by the solutions’ classification accuracy and ensures that the solutions of high 
fitness have a greater chance of survival than the solutions of poor fitness. Selection also preserves the best solutions 
of each generation (elites). This elite-mechanism ensures that the best solution of each generation never is degraded, 
guaranteeing weak optimization.  

When solutions are selected they are candidates for reproducing the new population. Some of the candidates are used 
for crossover; reproducing an offspring solution by randomly selecting bits from two parent solutions as exemplified in 
Figure 6. 

 

Figure 6: Crossover of two parent solutions. The offspring’s bits have 50% probability of being selected from one parent or the other. 

Further, another part of the reproduction candidates are mutated. Mutation flips a small part of a solution (usually just 
a single bit, called ‘bit-wise mutation’, from 0 to 1 or reversely) as shown in Figure 7. 

 
Figure 7: Bit-wise mutation of a chromosome, changing one single bit from 0 to 1. 

 

2.4. Data and optimization parameters 

All training data are achieved during (controlled) semi-closed chamber releases of simulants while test data are 
achieved from both chamber and open air releases. For each solution, the classifier is trained with all together over 
14000 samples representing the six different classes of spectra. Furthermore, the trained classifiers are tested on 
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approximately 60 000 samples of test data. All test data contain a number of background samples. Therefore, we do 
not need a separate test data set for background. A detailed overview of training data and test data is given in Table 1. 

Table 1: Number of time samples for training data and test data 

Simulant Training data Test data

BT 3516 608

BG 1001 13971

OV 2694 17589

Background 2499 -

MS2 2550 17430

EH 2354 11761

Sum 14614 61359

 

The parameters used in the genetic algorithm are shown in Table 2. Several runs with different parameters have been 
performed, resulting in the selected set. The large amount of decision variables involves a large population size so that 
the random initial population has solutions spread across large parts of the decision variable space. The selection 
method and low number of elites are chosen to prevent too quick convergence which could lead to local optima. 
Scattered crossover involves selecting bits randomly from parent chromosomes and the crossover rate involves 80 % of 
the remaining slots in the next population to be offspring of crossover (after the five elites are copied). The remaining 
slots in the next population are offspring of mutation where the mutation rate gives the probability of every single bit 
in a chromosome to be mutated. 

Table 2: Evolutionary parameters 

Operator Value/Rate/Method

Cross-over Scattered

Cross-over rate 0,8

Mutation Bitwise

Mutation rate 1/chromosomelength

Selection Rank fitness selection

Elites 5

Population size 1000

Generations 40

 

All data are normalized with the Euclidean norm, shown in Figure 8 and Figure 9 representing training data and test 
data for BT, respectively. 
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Figure 8: Normalized training data for the simulant BT. The color 
bar indicates signal strength. 

 

Figure 9: Normalized test data for the simulant BT together with 
background samples at the top. The color bar indicates signal 

strength 

 

3. RESULTS 

The results show that feature optimization with GAs gives significantly improved classification error rate, from 40 % to 
only 7 %. The iterative improvement provided by the GA is shown in Figure 10, where the blue points are the best 
solutions for each generation and the green points are mean fitness of the entire population of solutions. The 
improvement of the best solution for each generation indicates the finding of a potentially optimal solution already at 
generation 27 with a classification error of 7 %. The decreasing gap between each generation's best fitness and mean 
fitness shows continued improvement even after generation 27 and is an indication of convergence for the set of 
solutions. 

 

Figure 10: Optimization of classification error rate with genetic algorithms 
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Figure 11 shows the optimal solution of channel selection with GA, visualized by the gray bars. The solution shows that 
channels and bound intervals are selected from frequencies spread across the entire spectrum. Nevertheless, we make 
note of the algorithm's special points of interest, being the most discriminating frequency ranges. These are the ranges 
around the peak of the amplitude, after the cross point section around channel 25, and the interval from channel 35 to 
55. The optimal solution integrates the signal over 56 time samples, near maximal size for smoothing the signal. 

Figure 12 visualizes which of the selected channels that are bound in addition to the selected channels. Here, the white 
bars are the single selected channels (at full resolution) and the white bars followed by gray bars are the bounded 
intervals (reduced resolution). The bars show that the bound channels are the channels located at the peak, after the 
cross points and in the mid range frequencies, a possible indication of the significance of integrating the signal where 
the spectra have more or less equal derivative and selecting characteristic channels solely at frequencies surrounding 
cross points, preserving its discriminative content. 

 

Figure 11: Visualizing channel selection of the optimal solution. The gray bars are the selected channels. 

 

Figure 12: The white bars show selected channels and the white bars followed by gray bars show bound intervals. 

The benchmark results are shown in Figure 13, demonstrating advantage for the methods handling solutions of high 
flexibility (blue), and low performance for methods of more restricted solutions (green). The figure shows performance 
of the primitive feature selection method forward feature selection (FFS) (keep adding the best feature until no 
improvement), FLD, PCA and SVM in combination with the Bayesian linear classifier, meaning the methods are used to 
transform the data while classification is performed with the Bayesian linear classifier. For these benchmark methods, 
the training data and test data are preconditioned because these methods do not allow for signal processing. For this 
reason several parameters were tested and the most efficient processing in terms of low classification error was time 
integration of 10 time samples per interval and channel binding over 20 uniformly spread intervals covering the entire 
fluorescence spectrum. 

Random search is the best solution of 40 000 randomly generated solutions of the exact same coding for channel 
selection, channel binding and time integration as the solutions in the genetic algorithm. Compared to FLD as the best 
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classical dimensionality reduction method, the solution found with the genetic algorithm is more than three times 
more effective in terms of classification error, and compared to random search the same performance is more than 
twice as effective.   

SVM is performed using a radial basis kernel. A plausible reason for the low performance of this classifier is that SVM is 
only directly applicable for 2-categorial problems. Therefore, the classifier has to reduce the multi-class problem to 
several binary problems and compare the outcome. 

 

Figure 13: Relative performance of several data transformations combined with the linear Bayesian normal classifier. 

 

4. CONCLUSION 

The results show that simultaneous optimization of feature extraction and feature selection employing genetic 
algorithms gives a significant improvement in performance of the biological aerosol classification system and 
outperforms all benchmark methods tested. To our knowledge, this is a novel application of feature optimization using 
evolutionary algorithms in the field of biological warfare standoff detection. Compared to the raw data classification 
error of 40%, the error is reduced to 7% using the genetic algorithm.  

The advantage of GA as an optimization method of finding an optimal data transformation is partly due to the flexibility 
when coding the decision variable space of the problem. This claim is supported by the good performance of random 
search having same solution flexibility as the GA and being more accurate than all other benchmark methods (next 
after GA). This may be an indication that the optimization problem of selecting features combined with feature 
extraction for spectral data classification is indeed combinatorial with non-independent decision variables, a condition 
making it difficult for more established optimization methods to handle. 
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