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English summary 

Dynamic mechanical analysis (DMA) is a technique used to study and characterize materials. In 

the test method, small test specimens, or beams, are typically subjected to harmonic, three-point 

bending loads. During the test programme, the temperature is varied, for a given frequency of the 

external load, and a set of mechanical properties and the glass transition temperature are 

determined by the DMA instrument. 

 

The main purpose of the present report is to gain more insight into some of the various material 

parameters included in DMA and the relation between them. The technical manual for the DMA 

2980 instrument from TA Instruments contains a set of expressions for certain stiffness 

parameters of the materials tested. In the present report, some of the terms from these relations 

have been investigated carefully. Focus has also been put on increasing the basic knowledge and 

physical understanding of the storage modulus and the loss modulus obtained through DMA. 

 

In this report, a careful load-displacement analysis of a beam subjected to three-point bending has 

been conducted. Based on the analysis, it is found that the specific terms in the stiffness relations 

from the manual represent the effect of deflection due to bending moments and shear forces. 

Moreover, from a fundamental viscoelastic analysis of the beam, it has been shown that the 

storage modulus and the loss modulus, both determined through DMA, equal the Young’s 

modulus and the viscosity coefficient, respectively, for isotropic materials. 
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Sammendrag 

Dynamisk mekanisk analyse (DMA) er en testmetode som benyttes for karakterisering av 

materialer. I testmetoden brukes typisk små prøvestykker/bjelker som utsettes for tre-punkts 

bøyning, med harmonisk varierende laster. I løpet av et testprogram varieres temperaturen, for en 

gitt lastfrekvens, og ved hjelp av DMA-instrumentet kan en da blant annet bestemme materialets 

mekaniske egenskaper og glassovergangstemperatur. 

 

Målet med rapporten er å få inngående kjennskap til noen av de forskjellige parametrene som er 

inkludert i analysen, og relasjoner mellom disse. Ved FFI benyttes et DMA 2980-instrument fra 

TA Instruments, og den tekniske manualen for instrumentet inneholder noen uttrykk og relasjoner 

for relevante stivhetskoeffisienter for materialene som testes. I denne studien ønsker vi å se 

nærmere på noen av leddene i disse stivhetsrelasjonene. Samtidig er det et mål å få økt kjennskap 

til og forståelse for den fysiske tolkningen av lagringsmodul og tapsmodul, som er sentrale 

begreper innen DMA. 

 

I rapporten er det utført en detaljert last-forskyvningsanalyse av en bjelke utsatt for tre-punkts 

bøyning. Det er vist at de spesifikke leddene i de aktuelle stivhetsrelasjonene representerer 

effekten av nedbøyning som følge av bøyemomenter og skjærkrefter. Fra en grunnleggende 

viskoelastisk analyse av bjelken finner en også ut at prøvestykkets lagringsmodul og tapsmodul, 

som begge kan bestemmes fra DMA, i isotrope tilfeller er identiske med henholdsvis E-modul og 

viskositetskoeffisient for materialet. 
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1 Introduction 

Dynamic mechanical analysis (DMA) is a technique used to study and characterize materials. A 

harmonic load is applied to the test specimen of consideration, and the corresponding deflection, 

or displacement, is measured. Based on the relationship between the applied load and the 

observed deflection, the elastic and viscoelastic properties of the material are determined. 

Moreover, when analysing materials using DMA, the temperature is varied for a given frequency 

of the applied load. From this approach one can determine the glass transition temperature (
gT ) of 

the material. 

 

At FFI, DMA is applied as an important instrument for the material characterization of various 

materials, such as polymers, composites and propellants. The tests are carried out using a DMA 

2980 from TA Instruments. The main purpose of the present report is to gain more insight into 

theoretical considerations behind the mechanical properties that are measured using the DMA. 

We also aim at clarifying the origin of different terms in certain stiffness relations in the technical 

manual from the manufacturer, as well as their physical meaning. Moreover, it is of interest to get 

a better understanding on how the storage modulus and the loss modulus, obtained through DMA, 

are related to the Young’s modulus for elastic media. 

 

The report is organized as follows: In Section 2, the specific formula from the technical manual 

[1] is analysed. The relationship between the material modulus obtained through DMA and 

Young’s modulus is discussed in Section 3. The report ends up with some concluding remarks in 

Section 4. 

2 Analysis of formula for three-point bending test 

In the context of DMA, three-point bending is one of the most common test configurations. A 

simply supported beam is subjected to a vertical load, F , at the midpoint, resulting in a midpoint 

deflection,  , see Figure 2.1. 

 

In Section 6 of the manual provided by TA Instruments [1], an equation describing the 

relationship between the elastic modulus and a set of other parameters for the test beam in three-

point bending is offered, 

 

 
23 12

1 1 .
6 5

S

L t
E K

I L


  
    

   

 (2.1) 

 

Here, E  is stated to be the elastic modulus, L  is one half of the beam length, t  is the thickness 

of the beam, I  is the second moment of area (for the cross-section of the beam),   is the 

Poisson’s ratio, and SK  is said to be the measured stiffness. When running DMA tests using the 



 

  

  

 

 8 FFI-rapport 2011/01656 

 

three-point bending configuration, (2.1)  is one of the relations applied by the instrument’s 

software to obtain the results. 

 

 

Figure 2.1 Three-point bending test of a beam. The applied load, F , results in a midpoint 

deflection,  . 

 

Most of the physical parameters in the expression above are clearly defined. However, the manual 

does not contain any explanation on the exact meaning of the measured stiffness, SK . In the 

context of experimental testing within mechanics, a stiffness parameter is usually interpreted as 

the (stiffness) coefficient in the relation between an applied or measured load and a corresponding 

displacement. For the three-point bending test conducted in the DMA instrument (see  Figure 

2.1), this indicates that SK  might be the stiffness parameter in the relation between the applied 

load, F , and the resulting midpoint deflection,  , which reads 

 

.SF K   (2.2) 

 

Based on this fundamental assumption, we will now study the origin and meaning of the different 

terms in (2.1) using linear beam theory. 

2.1 Deformation due to bending moments 

First, we analyse static deformations due to bending moments for a simply supported beam 

subjected to a centred load. We assume that the beam is made of an isotropic and linear elastic 

material. From Euler-Bernoulli beam theory, see e.g. [2;3], it is well known that the relationship 

between the applied force and the corresponding deflection for a simply supported beam, as 

shown in Figure 2.1, is given by 

 

,3

6
b

EI
F

L
  (2.3) 

 

where b  is the part of the midpoint deflection that is due to bending moments. Expressing (2.3) 

with respect to the deflection, we obtain 
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3

.
6

b

FL

EI
   (2.4) 

 

Now, dividing equation (2.3) by b , assuming that the entire midpoint deflection of the beam is 

represented by b , and introducing the measured stiffness, SK , from (2.2), we obtain 

 

3

6
,S

EI
K

L
  (2.5) 

 

which after some simple rearrangements reads 

 
3

.
6

SK L
E

I
  (2.6) 

 

By careful inspection, it is seen that the right hand side of (2.6) is equal to the first term on the 

right hand side of (2.1). Therefore, it can be concluded that this term is due to bending. 

2.2 Deformation due to shear forces 

Although bending moments in most cases are the main contributor to deflections of beams, shear 

forces may also play a crucial role in certain cases, in particular if the length-to-thickness ratio 

/L t  is not much larger than unity. In the following, we will therefore study the shear 

deformations of the beam shown in Figure 2.1, and investigate whether the second term on the 

right hand side of (2.1) is related to shear forces, or not. 

 

From simple equilibrium considerations of the beam subjected to three-point bending, it is found 

that the distribution of (vertical) shear forces,Q , along the beam is as shown in the shear force 

diagram depicted in Figure 2.2. The governing differential equation for shear deformations of 

beams may be derived from the basic relationship between the shear stress and shear strain. 

 

 

Figure 2.2   Shear force (Q ) diagram for the simply supported beam subjected to three-point 

bending. 

 



 

  

  

 

 10 FFI-rapport 2011/01656 

 

Assuming a linear elastic material and deformations in the (vertical) xy  plane, as indicated in 

Figure 2.3, which shows the shear forces and deformation pattern of an infinitesimal element, dx , 

of the left part of the beam, i.e. x L , we obtain 

 

.xy xyG   (2.7) 

  

Here, 
xy  is the shear stress, 

xy is the shear strain, and G  is the shear modulus of the material. 

Using the definition of the shear strain, (2.7) can be expressed as 

 

1
,xy

dv

dx G
  (2.8) 

 

where v  is the displacement component in the vertical direction. 

 

 

Figure 2.3 Shear forces and deformation pattern of an infinitesimal element, dx, of the beam. 

 

It is well-known that the shear stress distribution at a given cross-section along the beam is not 

constant. For a rectangular cross-section, the shear stress varies as a parabolic function [2]. The 

stress value is zero at the top and bottom of the cross-section (due to free surfaces), while the 

maximum value is attained at the mid-thickness level, see Figure 2.4. However, when analysing 

the deflection of the beam due to shear, a uniform approximation for the shear stress distribution 

is usually adopted. A natural choice for this approximation is to apply the mean shear stress, 

given by 

 

, ,xy mean

Q

A
   (2.9) 

 

where Q  is the shear force, and A  is the area of the cross-section. However, more detailed 

analysis methods, including energy considerations, suggest a modified approximation for the 

shear stress to be used [2], 

 

, ,xy xy mean

Q

A
     (2.10) 

 

where   is a shear coefficient. For rectangular cross-sections, in particular, it can be shown that 

the optimal choice is 6 / 5  . Inserting (2.10) into (2.8) yields 
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,
dv Q

dx GA
  (2.11) 

 

where /GA   is denoted the effective shear stiffness. 

 

 

 

Figure 2.4 Shear stress distribution for a beam with a rectangular cross-section. 

 

In this study, we are interested in the deflection at the midpoint, i.e. at x L , of the beam shown 

in Figure 2.1. The vertical displacement due to shear can be determined from the boundary value 

problem, which, after introducing / 2Q F  (from Figure 2.2), reads 

 

 , 0,
2

dv F
x L

dx GA
   (2.12) 

 

 0 0.v x    (2.13) 

 

The displacement field is obtained by solving the differential equation in (2.12), which in this 

case is done through simple integration, and then applying the boundary condition in (2.13) to 

determine the integration constant. After calculations we get 

 

  .
2

F
v x x

GA
  (2.14) 

 

The deflection at the midpoint of the beam is obtained by evaluating the displacement field (2.14) 

at x L , 

 

  .
2

s

FL
v x L

GA
     (2.15) 

 

Finally, inserting A bt  (where b  is the width of the beam),   / 2 1G E   , which is valid 

for isotropic, linear elastic materials, and putting in the optimal value for the shear coefficient for 

a beam with a rectangular cross-section, we obtain 

 

 16
.

5
s

FL

Ebt





  (2.16) 
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2.3 Total deformations 

With the expressions for the mid-point deflection due to both bending and shear at hand, we are 

now in a position to express the total deflection. From assuming small deformations and a linear 

elastic material, the contributions from the deformation due to bending moments and due to shear 

forces may be summed, i.e. applying the principle of superposition [2]. The total deflection may 

hence be expressed as the sum of (2.4) and (2.16), reading 

 

 

 

3

3

2

16

6 5

136
1 .

6 5

b s

FLFL

EI Ebt

FL I

EI bt L

  





 


 

 
  

 

 
(2.17) 

 

By inserting the expression for the second moment of area of the beam with rectangular cross-

section,  3 /12I bt , into the second term of the parenthesis in (2.17), we obtain 

 

 
23 3

1 1 .
6 5

FL t

EI L
 

  
       

 (2.18) 

 

The latter relation is now multiplied by /E  . In addition, the measured stiffness from (2.2) is 

introduced. This results in the final expression for the elastic modulus 

 

 
23 3

1 1 .
6 5

S

L t
E K

I L


  
       

 (2.19) 

While the first term on the right hand side of (2.19) is identical to the corresponding term in (2.1), 

there is a small discrepancy for the second term. In (2.19), the numerical factor of this term reads 

3/ 5 , while the corresponding factor in (2.1) is 12 / 5 . Because all the remaining factors and 

parameters in these terms agree, we are convinced that the second term of (2.1) is meant to 

represent the contribution due to shear deformations, and that the only reason for the difference 

between (2.1) and (2.19) is an error in (at least) one of the analyses leading to the final results. 

 

In order to examine the problem a bit closer, trying to figure out the reason for the differences 

between (2.1) and (2.19), we have conducted a completely independent analysis of a simply 

supported beam with length L̂  (instead of 2L  as applied in the above analysis), and still with a 

vertical midpoint load F . Furthermore, all the remaining parameters are identical to the ones 

applied previously. The resulting expression for the Young’s modulus now reads 
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 
23̂ 12

1 1 .
ˆ48 5

S

L t
E K

I L


  
       

 (2.20) 

 

By comparing (2.20) with (2.1) it is seen that the expressions within the outer set of parentheses 

are identical (except for the use of L̂  and L  in (2.20) and (2.1), respectively), but now the 

numerical factors in the denominator to the left of the first parenthesis differ. On the other hand, 

by substituting ˆ 2L L  into (2.20) we end up with an expression for the Young’s modulus that is 

identical to (2.19). The fact that the result of this additional analysis completely agrees with 

(2.19), serves to increase the trustworthiness of the derivations presented in the present report. 

Therefore, we believe that our results are correct, and that there is an error in the expression (2.1) 

presented in the technical manual [1]. As discussed above, this error is related to the shear 

deformations of the beam, which are known to be small compared to the deflections due to 

bending moments in a wide range of practical applications.  

 

Let us conclude this section by including a brief quantitative discussion on the effects of the shear 

deformations and the error introduced in the shear term of (2.1). For example, by assuming the 

thickness-to-length ratio of the beam to be 0.1 (which means that / 2 0.1t L  ), the contribution 

from the shear deformations is limited to 3%, while the error in the shear term of (2.1) means that 

the Young’s modulus will be overestimated by approximately 10%. Thus, the effect of the error 

in this equation might be relatively large, even though the geometric properties of the beam 

indicate that the effects due to shear are small. 

3 Storage modulus and loss modulus 

As indicated at the beginning of this report, DMA is known to be an experimental technique that 

is well suited for studying the mechanical behaviour of viscoelastic materials such as polymers. In 

DMA, the most common test specimen for such materials is a short beam subjected to three-point 

bending. A harmonic load is typically applied, and the time-dependent deflection, including the 

amplitude and the phase lag, is registered by the instrument. Based on these response quantities, 

the storage modulus and the loss modulus of the material are calculated. Furthermore, by varying 

the temperature of the specimen during loading, the glass transition temperature of the material 

may also be obtained. 

 

In this part of the report, we will analyse the time-dependent behaviour of the beam subjected to 

three-point bending. By introducing the relations derived in Section 2, the physical interpretation 

of the storage modulus and the loss modulus will be examined. 

 

Assuming that the behaviour of the viscoelastic material of consideration may be described by a 

Kelvin-Voigt model, the normal stress ( ) can be expressed as 

 

,E     (3.1) 
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where E  is the Young’s modulus,   is the normal strain,   is the viscosity coefficient, and   is 

the rate of change of the normal strain, i.e. /d dt  . The first term on the right hand side of 

(3.1) represents the elastic part of the material behaviour, whereas the second term models the 

viscous part. 

 

As we have seen in Section 2, based on the (quasi-) static load-displacement relation (2.2) and the 

assumption of a linear elastic material behaviour, we were able to derive equation (2.19) relating 

the measured stiffness parameter, SK , to certain elastic and geometric properties of the beam. 

Imagine a beam made of a pure viscous material. Then there is a one-to-one relationship between 

the applied load and the rate of change of displacement, or the velocity. In the case of three-point 

bending, this relation may be written 

 

,SF C   (3.2) 

 

where F  is the applied force, SC  is the viscous stiffness parameter for the beam, and   is the 

rate of change of midpoint deflection. By repeating the same kind of analysis as conducted in 

Section 2 for the present pure viscous beam, we end up with an equation similar to (2.19), in 

which E  and SK  are replaced by the viscous coefficient,  , and the corresponding viscous 

stiffness, SC , respectively. That is, a relatively simple relation between SC ,  , and several 

geometric properties of the beam is established. 

 

Finally, we want to perform a careful analysis of the dynamics of the three-point bending beam 

aiming at deriving relations between the stiffness parameters, SK  and SC , and response 

properties that are directly accessible to the DMA instrument. We consider a beam made of a 

viscoelastic material, described by the Kelvin-Voigt model (3.1). As stated in Section 2, test 

specimens applied in DMA are typically subjected to harmonic loads. By neglecting inertia 

forces, which are assumed to be small compared to the elastic and viscous terms, and including 

the remaining load terms introduced through (2.2) and (3.2), the dynamic equilibrium equation 

for the midpoint deflection of the beam can be expressed by [4] 

     0 sin ,S SC t K t F t     (3.3) 

 

where 0F  is the amplitude of the applied load, and   is the angular frequency of the load. This is 

an inhomogeneous differential equation, which means that the general solution consists of the 

sum of the (general) homogeneous solution and the particular solution. The amplitude of the 

homogeneous part will be reduced due to the viscous damping of the material, and the particular 

solution will thus be the dominating part. Based on the form of the differential equation and the 

load function, a natural guess for the particular solution is given by 

 

     1 2cos sin ,p t D t D t     (3.4) 
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where 1D  and 2D  are constants to be determined. By inserting (3.4) into (3.3), and equating the 

sine and cosine terms separately, we obtain a system of equations for the constants, which may be 

written, 

 

1 2 0

1 2 0,

S S

S S

C D K D F

K D C D

  

 
 (3.5) 

 

with the unique solutions 

 

0
1 2 2

0
2 2 2

.

S

S S

S

S S

F C
D

C K

F K
D

C K

 





 (3.6) 

 

Thus, the particular solution of (3.3) is defined through (3.4) and (3.6). As pointed out above, the 

amplitude and the phase lag of the midpoint deflection is monitored by the DMA instrument 

during loading. Therefore, for the present analysis it is advantageous to rewrite the particular 

solution in the form 

 

   sin ,p t R t     (3.7) 

 

where R  is the amplitude and   is the phase lag. By using a formula for the sine function of the 

difference between two angles (or arguments) and some simple algebraic manipulations, it may 

be shown that 

 

0

2 2

arctan .

S S

S

S

F
R

C K

C

K





 
  

 

 (3.8) 

 

The fact that the phase angle is close to zero in problems dominated by elastic forces ( S SK C ), 

and that the phase lag approaching / 2  (or 90 ) in viscous-dominated problems ( S SC K ), 

are easily derived from (3.8). By inverting the relations in (3.8), we obtain 

 

0

0

cos

sin
,

S

S

F
K

R

F
C

R









 (3.9) 

 

which states an important set of results. Based on the amplitude of the applied load and the 

resulting amplitude and phase lag of the midpoint deflection, the elastic and viscous stiffness 
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parameters included in the governing dynamic equilibrium equation for the beam can be 

calculated by the DMA instrument. The storage modulus, which is identical to the Young’s 

modulus, E , for isotropic Kelvin-Voigt materials, is then predicted from (2.19) and (3.9). 

Furthermore, the loss modulus, or the viscous coefficient,  , is obtained from (3.9) and a relation 

between   and SC , which can be derived in a similar manner as the analysis that led to (2.19). 

4 Summary 

In this report, a careful load-displacement analysis of a beam subjected three-point bending has 

been conducted. Based on this analysis, we have found that the specific terms in the stiffness 

relations in the technical manual for the DMA manual represent deflection due to bending 

moments and shear forces, respectively. Moreover, from a fundamental viscoelastic analysis of 

the beam, it has been shown that the storage modulus and the loss modulus, both determined 

through DMA, are identical to the Young’s modulus and the viscosity coefficient, respectively, 

for isotropic materials. 
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