

FFI-rapport 2011/02235

SOA Pilot 2011 – service Infrastructure

Ketil Lund, Frank T. Johnsen, Trude H. Bloebaum and Espen Skjervold

Norwegian Defence Research Establishment (FFI)

3 February 2012

 2 FFI-rapport 2011/02235

FFI-rapport 2011/02235

1176

P: ISBN 978-82-464-2074-5

E: ISBN 978-82-464-2075-2

Keywords

Tjenesteorientert arkitektur

Nettbasert Forsvar

Eksperiment

Web services

Approved by

Rolf Rasmussen Project Manager

Anders Eggen Director

FFI-rapport 2011/02235 3

English summary

The SOA1 pilot was demonstrated for the Norwegian Defense at FFI in June 2011. Our goal was

to give a practical demonstration of some of the benefits of using a service-oriented architecture.

In the pilot, we included a number of existing military operational systems and service-enabled

these by using so-called wrappers. All these systems were then connected in a common

information infrastructure, offering their information through services.

In this report, we present the pilot and how it was carried out from a technical (SOA-oriented)

point of view. We describe how the functionality of the systems were service-enabled, how the

SOA infrastructure was realized, and our recommendations and lessons learned from the pilot.

1 Service-Oriented Architecture

 4 FFI-rapport 2011/02235

Sammendrag

SOA2-piloten ble vist for Forsvaret på FFI i juni 2011. Målet vårt var å gi en praktisk

demonstrasjon av noen av fordelene med å bruke en tjenesteorientert arkitektur. I piloten tok vi

utgangspunkt i et antall eksisterende militære operative systemer, og ga dem tjenestegrensesnitt

ved hjelp av såkalte ”wrappere”. Alle disse systemene ble så koplet sammen i en felles

informasjonsinfrastruktur, og informasjonen fra dem gjort tilgjengelig i form av tjenester.

I denne rapporten presenterer vi piloten og gjennomføringen av den fra et teknisk (SOA-orientert)

synspunkt. Vi beskriver hvordan funksjonaliteten i systemene ble gjort tilgjengelige som

tjenester, hvordan SOA infrastrukturen ble realisert samt våre anbefalinger og lærdommer fra

gjennomføringen av piloten.

2 Service-Oriented Architecture – tjenesteorientert arkitektur

FFI-rapport 2011/02235 5

Contents

1 Introduction 7

2 Overview 8

2.1 Scenario 8

2.2 SOA enabling of infrastructure and systems 9

2.3 Wrapping of operational systems 11

2.4 Information flow 12

3 Systems and software 15

3.1 Wireless sensor networks 15

3.1.1 Concerns regarding service-enabling a wireless sensor network 16

3.1.2 Our sensor network gateway: A Web service wrapper 16

3.1.3 Sensor capability in the SOA Pilot 17

3.2 Google earth as a BFT viewer 17

3.3 Web services-enabling CRIADS 19

3.4 Web services-enabling NORCCIS II 20

3.5 Web services-enabling NIRIS 20

3.6 Web services-enabling the CSD 20

3.7 Web services-enabling NORMANS 20

4 Publish/subscribe framework: OASIS WS-Notification
standard 21

4.1 WS-Notification 21

4.2 Publish/subscribe in the SOA Pilot 21

5 Service discovery: OASIS WS-Discovery standard 22

5.1 WS-Discovery overview 22

5.2 Compression 22

5.3 Implementation and evaluation 23

5.4 WS-Discovery network usage evaluation 24

5.5 WS-Discovery in the SOA Pilot 26

6 The Viewer 27

7 Security: Data diodes 29

7.1 Web Service Communication Patterns 29

7.1.1 Service Discovery 29

7.1.2 Service Invocation 31

 6 FFI-rapport 2011/02235

7.2 Adapting Web service communication 32

7.2.1 Service Discovery 33

7.2.2 Service Invocation 33

7.3 Proof-of-Concept Implementation 34

7.4 Security in the SOA Pilot 36

8 Recommendations and lessons learned 36

8.1 WS-Notification infrastructure (WS-Messenger) 37

8.2 Wrapper software 38

8.3 JBridge 39

8.4 Service discovery 40

8.5 DSProxy 41

8.6 Format translation 41

9 Conclusion 42

References 43

 Appendix A FFI SOA pilot incident format schema 45

FFI-rapport 2011/02235 7

1 Introduction

The main motivation for the SOA Pilot work has been to show the possibilities offered through

service orientation, and to gain experience in exposing functionality from operational systems as

Web services.

In order to realize network enabled capabilities, interoperability is a main concern.

Interconnecting heterogeneous systems, both legacy and new systems, implies a transition from

stove-pipe systems with little focus on information sharing, to systems with standardized

interfaces and data formats. As a consequence, the service-oriented architecture (SOA) paradigm

has become a key factor and an important initiative both in NATO and nationally. SOA helps

making processes interoperable, and enables a much easier exchange of information. The

foundation for a common situational awareness is increased information sharing, and this requires

a strategy for making information visible, available, accessible, and understandable. For an

introduction to SOA (the paradigm) and Web services (the technology), see [1] Sections 1 and 3.

The goal of the SOA Pilot has been to expose functionality from existing and new systems and

applications as services. This is achieved by

 Integrating and connecting different applications and services

 Avoiding tailored (proprietary) point-to-point solutions

 Making ad-hoc users able to access relevant information without needing system-specific

solutions

 Having a distributed, loosely coupled SOA-enabled system

 Composition of new services by combining existing services

 Hiding physical location, communication protocols and implementation details from

consumer and provider

To ensure interoperability, it has been an important goal to ensure that the services adhere to the

standards defined in the NATO Core Enterprise Services [28]. These are defined as “technical

services that facilitate other service and data providers to deliver content and value to end users.

They can be thought of as the enablers used by other services […] They are independent of

business process and context, and are ubiquitous.” We implemented our services according to the

recommendations in [28] and we also successfully verified compliance with the recommendations

through our interconnection with the SOA infrastructure at the NATO C3 Agency (NC3A).

This report covers the SOA-related technical parts of the pilot, and it is organized as follows. In

Section 2 we give a brief introduction to the scenario and we describe the infrastructure and

information flow. We also show the general principle for wrapping operational systems.

Next, in Section 3 we give a brief description of the different operational systems used in the

pilot, and how they were Web services-enabled. In Section 4 we present the WS-Notification

 8 FFI-rapport 2011/02235

standard and how it was used in the SOA Pilot. Then, in Section 5 we describe the WS-Discovery

standard, which was used as the service discovery mechanism throughout the pilot. We present

the Viewer used in the pilot in Section 6. This viewer was designed specifically for the pilot, and

played an important role in demonstrating the benefits of SOA.

In Section 7 we discuss how the SOA principles can be used in an environment where networks

with different classification levels are connected through a data diode. Then, in Section 8 we

present the lessons learned from our work with the pilot, as well as recommendation based on

what we learned. Finally, in Section 9 we conclude the report.

2 Overview

2.1 Scenario

The scenario takes place in an expeditionary operation located in the Lillestrøm area. It was

decided to use the vicinity of FFI since the pilot included real movements and tracking within the

operational area, as well as need for radio coverage. All this was greatly simplified by having it

located close to FFI.

The following types of actors participate in the scenario:

 2 Ground Teams

 Tactical Unit with HQ

 Tactical Command HQ

 Task Unit (QRF)

 Fighter aircraft

 Surface Vessel

 UAV

 Intel provider

 National HQ on home ground

This report does not go into details on the functions and roles of these actors. Instead, our focus is

on the information exchange requirements between the different actors/units, and how using a

service-oriented architecture can contribute to meeting these requirements. For a description of

the actual scenario, we refer to [25].

Assumptions

Some common assumptions with regard to the scenario and architectures were made:

 Some actors are given functionality that is not implemented yet in the respective

platform.

 The same radio (and waveform) is utilized within the coalition.

 Satellite communication is available to the Ground Team when standing still.

FFI-rapport 2011/02235 9

 Basic security is handled on the IP level.

 The Ground Teams and the Task Unit have connectivity using the SOA infrastructure and

are able to publish services directly on the infrastructure without doing an internal

information exchange between FACNAV and NORCCIS II before publishing services.

 For demonstration purposes the services published from each actor are expected to be

able to use the communication medium available in the actor‟s location.

 The fighter aircraft is assumed to have the ability to exchange and utilize services with

Link 16 information through the SOA infrastructure.

 The Surface Vessel can act as a relay for the fighter for distribution of services.

 Surveillance from the UAV is considered as an intelligence actor in this context.

Note that these are assumptions, and not necessarily implemented in the pilot. For instance, we

did not actually IP level security or satellite communications. Nor did we use planes or vessels,

these were only simulated. We did use cars for ground movement, though.

2.2 SOA enabling of infrastructure and systems

The physical infrastructure of the SOA Pilot consisted of a wired LAN located in our lab, in

addition to a VPN connection to NC3A, and two different radio networks (Kongsberg WM600

and MRR). On the NC3A side, the physical infrastructure was constituted by a wired LAN.

Except for the WM600 UHF radios, all this is standard hardware being used in the military today.

Correspondingly, all the operational systems included in the pilot, except for NORMANS and the

sensor network, are systems being used operationally. With this as a starting point, we then built a

SOA on top of the existing infrastructure, and made the operational systems available as services.

In our work we use the following definition of SOA:

SOA is an architectural style for making resources available in a way that they may be found and

utilized by parties who don’t need to be aware of them in advance.

The way resources are made available and discoverable is as services. A service is described

using a formal specification (for instance, a WSDL, if Web Services are used to realize SOA),

and the focus is on transmission formats. This means that the client is independent of the service,

as opposed to what is the case when the client is based on an Application Programming Interface

(API) and reuse of code. As a consequence the service becomes autonomous, meaning that the

runtime environment of the service can be changed without this affecting the clients.

Following the SOA principles we get a loose coupling between the clients and the services, with

respect to both time (enabling asynchronous communication) and place (location of both client

and service can be changed without need for reconfiguration). The clients discover services as

they appear and invoke or subscribe to these (provided these are known service types). This is

illustrated in Figure 2.1.

 10 FFI-rapport 2011/02235

Figure 2.1 The SOA triangle

For message transport, SOAP over HTTP/TCP was used, and most information was disseminated

using publish/subscribe (WS-Notification, see Section 4). An overview of the physical

infrastructure is shown in Figure 2.2. As can be seen from this figure, the majority of the

operational systems were connected directly to the wired LAN.

Ground Team A1

(FACNAV)

Dismounted

Soldier

(NORMANS)

Kongsberg WM 600

National HQ

(NORCCIS II)

Tactical Unit A

(NORCCIS II)
UAV

Coastal Radar

(CRIADS)

MRR

Sensornet

TDL GW
Fighter

(Link16)

Ground Team B1

Naval Element

(MCCIS)

Simulated

Simulated

MILSGuard

NC3A

Mapping Authority

(GEO)

Tactical

Command

(JOCwatch)

Incidents

(PASS)

NOR CSD

VPN

VPN

N
C

3
A

 I
n

te
g

ra
ti
o

n
 C

o
re F

F
I
L

A
N

Figure 2.2 Physical infrastructure and operational systems

The different operational systems appeared as services on the network, and could be dynamically

discovered and invoked (i.e., subscribed to).

FFI-rapport 2011/02235 11

2.3 Wrapping of operational systems

Services in a SOA can be realized in three different ways, as shown in Figure 2.3:

 They can be implemented as services from the start. This is what is normally done when

implementing new systems

 Existing (non-SOA) systems can be “wrapped”, in the sense that a piece of software is

placed in front of the system, presenting services to the outside world, while

communicating “natively” with the wrapped system

 Existing services and systems can be combined into new, aggregated services, by using

software that coordinates (orchestrates) access to the individual systems and services,

and presents the aggregate as a new service.

None of the operational systems used in the SOA Pilot offered the required information as Web

services, and we therefore used the wrapper approach on these systems. In addition, our Viewer

(see Section 6) has the ability to offer the information it receives from other services as a new

service, thus representing a type of composite service.

Figure 2.3 Realizing SOA-services

The general principle of wrapping in the SOA Pilot is shown in Figure 2.4. In this figure, the WS

wrapper and the WS-Notification entities together constitute the Web services adapter, as

described in [25]. Each wrapped operational system delivers data (notifications) to a WS-

Notification server, which is then responsible for delivering the notifications to all subscribers. In

the pilot, only the Viewers acted as subscribers (in addition to being able to act as a service in

itself, as described above). In addition, all services announced their presence using WS-

Discovery, so that clients (in our case the viewer applications) could dynamically discover and

invoke these.

 12 FFI-rapport 2011/02235

Figure 2.4 General principle of wrapping systems

2.4 Information flow

In Figure 2.5 below, we show the logical information flow in the initial situation of the scenario.

In other words, this shows how the information flows between the different military units. In

general, the information flows “vertically”, i.e., between echelons, with the Tactical Command

HQ functioning as a bridge between the two tactical units.

Figure 2.5 Logical information flow in the initial situation of the scenario

Tactical Unit A

operational area

Ground Team A1

operational area

Friendly Force Tracking

Status Reporting

Tactical Command HQ (Higher

unit) and ASOC

Tactical Unit A HQ

UAV

Fighter

air base

Task Unit

(QRF)Tactical Unit B

operational area

Ground Team B1

operational area

Friendly Force

Tracking

Friendly Force

Tracking

FFI-rapport 2011/02235 13

The actual information flow is shown in Figure 2.6. As can be seen from the figure, the Viewer

instances worked as aggregation points: In Ground Team A1, the local Viewer subscribed to, and

visualized information from the FACNAV and NORMANS systems. This aggregated view was

then offered as a Common operational picture (COP) service to Tactical Unit A, which also

subscribed to a number of other systems, as shown in the figure.

The aggregated view from the Viewer in Tactical Unit A was then offered as a service to both

National HQ and Tactical Command. Note that we placed an additional Viewer instance between

Tactical Unit A and Tactical Command. This enabled us to control what information was sent to

Tactical Command (i.e., NC3A). In the pilot, we forwarded the entire COP from Tactical Unit A,

but the fact that all services were offered into one common infrastructure, provided us with great

flexibility in how to distribute information. Thus, we could have chosen any combination of

available services.

Figure 2.6 Actual information flow between the units in the pilot

 14 FFI-rapport 2011/02235

FACNAV NORCCIS-II

Ground Team

B1

CSD
CRIADS

ServiceMix (WS-Notification)

JOCWatch

NC3A-LAB

Chat

(XMPP)

Positions and status

update from GT

(NFFI tracks)

COP (TU/National)

(NFFI tracks)

RAP

(NFFI tracks)

Fartøyplot

(NFFI tracks)

WS-Notification

COP

(NFFI tracks)

Incident

reports

Chat

(XMPP)

Viewer

application

NIRIS

MCCIS

RMP

(NFFI tracks)

NORMANS

Tracks

(NFFI)

Tracks

(NFFI)

Tracks

(NVG)
Incident reports

(NVG)

Incident

reports

Tracks

(NFFI)

Incidents

Incidents

Images

Google

Earth

Tracks

(NFFI)

WS-

Notification

NIRIS

Link 16

simulator

WS-

Notification

WS-

Notification

WS-

Notification

WS-

Notification

WS-

Notification

WS-

Notification

W
S

-

N
o

tific
a

tio
n

WS-

Notification

UDDI

UDDI

Map service

Tracks

(NFFI)

PASS

Sensor

network

DSProxy

D
S

P
ro

x
y

Figure 2.7 Information flow between systems

Figure 2.7 shows a more detailed picture of the information flow between the different systems.

As described earlier, each operational system was wrapped with a Web service, delivering

notifications to a WS-Notification service. Note that in the SOA Pilot, our focus was to

demonstrate service enabling of existing operational systems. Therefore, each service announced

through WS-Discovery reflected which operational system that was lying behind it.

Consequently, we got a somewhat artificial set of services consisting of one CRIADS service, one

NORCCIS-II service, one FACNAV service, etc. In a real-life environment, it is more likely that

the services will reflect the type of information offered. Likewise, the user will select services

based what information he or she needs, and not only based on which operational system that

provides it.

In addition, we had two UDDI registries that were federated, one at NC3A and one at FFI, and we

had an XMPP-based chat between all units (JChat).

We also used Google Earth as an alternative viewer, in order to demonstrate the capabilities of

COTS software. This is further described in Section 3.2.

Finally, the sensor network was connected over a low bandwidth radio connection, and we

therefore used the DSProxy to enable Web services over this connection. This is described in

Sections 3.1.3 and 8.5.

FFI-rapport 2011/02235 15

3 Systems and software

3.1 Wireless sensor networks

Wireless Sensor Networks are expected to provide greatly enhanced situational awareness for war

fighters in the battlefield. Sensors widespread in the battlefield are, however, of very limited

value unless the sensors are reliable during the entire operation and the information produced is

accessed in a timely manner. We have focused on these issues by enabling wireless sensor

networks as a capability using Web services. In cooperation with FFI project 1141 “Situational

Awareness Sensor Systems” we have shown that Web services is an enabling technology for

information sharing, facilitating presentation of sensed data and alarms to a battlefield

management system.

In addition, we tested the feasibility of using a Web services approach as a query processing tool

enabling multi-sensor fusion and data aggregation in the wireless sensor network domain. The

networking protocols can in this way inherently adjust data aggregation and -processing criteria

according to the requirements posed by external subscriber systems. In this way, energy

efficiency, which is paramount in wireless sensor networks, is optimized without sacrificing the

flexibility of Web services. Below we present the Web services software, which was used in the

SOA Pilot. For the complete wireless sensor network experiment details, see [2].

Figure 3.1 Sensor network enabled as a service providing capabilities to different consumers

 16 FFI-rapport 2011/02235

3.1.1 Concerns regarding service-enabling a wireless sensor network

Since wireless sensor networks have scarce resources in terms of available bandwidth, battery,

and computational power, it does not make sense to attempt to service-enable each and every

sensing node. Instead, we use a wrapping approach, thus allowing existing mechanisms to be used

within the wireless sensor network, while nodes external to the wireless sensor network may

configure and receive information from the network using Web services. External consumer

systems are for example Battlefield Management Systems (BMS) or Weather Monitoring

Stations, see Figure 3.1.

We do not, however, consider Web services only as an information-sharing and interoperability

entity. In our architecture, we also suggest the use of a Web services gateway as a query

processing system publishing relevant sensing and alarm-criteria to the wireless sensor network

domain. The networking protocols can in this way inherently adjust data aggregation and

processing criteria according to the requirements posed by the external subscriber systems. In this

way, energy efficiency, which is paramount in wireless sensor networks, is optimized without

sacrificing the flexibility of Web services.

Figure 3.2 Architecture (WSN = Wireless sensor network)

3.1.2 Our sensor network gateway: A Web service wrapper

The gateway contains the Web services wrapper and provides an interface (a front-end) to the

wireless sensor network using established Web services standards (see Figure 3.2). A WSDL file

defines the interface, data types and message flow, whereas SOAP is employed for message

transmission. This part of the wrapper is accessible to other systems using COTS Web services

technology. The Web service interface allows external clients to configure queries for the

wireless sensor network, and register a service endpoint (EP) for pushed information. In other

words, our wrapper supports the publish/subscribe pattern, in that clients register a query (step 1,

subscription providing recipient EP) and results of this query (be it periodic reports or

spontaneous alarms) are sent (i.e., published directly to the consumers in steps 6 and 7) to the

FFI-rapport 2011/02235 17

registered service endpoint. A client connecting to the gateway is typically a Battlefield

Management System, requesting alarm reports when a subset of the sensing nodes detects an

intruder which is trespassing in the area monitored. When the wireless sensor network reports to

the gateway (step 3) about a detected target, the gateway sends a request to a separate Web

service enabled camera (step 4) to take a picture covering the area monitored.

The target information (from step 3) and the picture provided (by step 5) are combined to a report

sent to the BMS endpoint (e.g., step 6 and/or 7). COTS Web services technology is used to

implement step 1 as well as steps 4 through 7, limiting proprietary solutions only to the

functionality implemented in the back-end system, i.e., steps 2 and 3. Another Web services client

could be a weather monitoring station, requesting periodic temperature or humidity reports.

In addition to supporting third party consumer applications, the architecture can also provide

special case Web services for example to provide network developers with real-time information

about the network at any given time, either during the initial deployment, create mid-life status

reports, or to assist redeployment of energy exhausted nodes. These reports can be forwarded to a

dedicated monitoring endpoint.

3.1.3 Sensor capability in the SOA Pilot

In the SOA Pilot, we used a subset of the above described implemented functionality. There, our

setup was only triggered by motion, and we had no subscriptions for the temperature or camera

capabilities. Since the SOA Pilot was built around two information formats – incidents and blue

force tracks – the sensor network output was presented in the pilot infrastructure as an “FFI

incident”, i.e., coded according to the incident schema (see Appendix A). The incident was

delivered over MRR to the integration core software (point-to-point Web service interface),

which would then re-distribute the incident to the appropriate subscribers using Web services

notification. Since the MRR offers relatively low bandwidth, we used DSProxys [27] at each end

of the connection to enable the use of Web services.

3.2 Google earth as a BFT viewer

Google earth (http://www.google.com/earth/download/ge/) is a freely downloadable application

providing zoomable satellite maps of the earth. The application can be used for generic map

browsing, or it can be used for special purpose visualization by feeding it with KML3 formatted

data. In the SOA Pilot, we used our Viewer as the main application for consuming and visualizing

publications – both NFFI and incidents. However, as a proof-of-concept to show how simple it is

to replace parts of a SOA-based infrastructure, we created an alternative blue force tracking

(BFT) viewer using Google earth.

The setup was as follows: First, we installed Google earth on a computer in the network. On this

computer we created a Web services notification subscriber, which set up a subscription for NFFI

3 KML is a file format used to display geographic data in an earth browser such as Google Earth. It uses a

tag-based structure with nested elements and attributes and is based on the XML standard. A tutorial is

available at: http://code.google.com/apis/kml/documentation/kml_tut.html

 18 FFI-rapport 2011/02235

tracks from the local HQ. This ensured that whenever new tracks were available at the HQ, they

would be pushed to our subscribing application. This application could then translate NFFI to

KML, and output the KML to a file. Converting NFFI to KML is straightforward, provided you

are only interested in visualizing the NFFI positional data type (PDT). The PDT contains

information such as latitude, longitude, and altitude which can position the track in a map. The

unit description string must be replaced by an URL in KML, where the URL points to a graphical

representation of the APP6A symbol in the network. Google earth was configured to read the

KML file at regular intervals, and would visualize the points encoded therein. So, by doing this

simple transformation we were able to show BFT information in Google earth. Figure 3.3 below

illustrates a screenshot from Google earth, with an expanded view of one of the tracks originating

from the CRIADS system (see the following section).

Figure 3.3 Google Earth screenshot

FFI-rapport 2011/02235 19

3.3 Web services-enabling CRIADS

CRIADS is a system for coastal radar tracks. It can export several formats, among them OTH-

gold (Over-The-Horizon Gold) . There is, however, currently no support for exporting NFFI

tracks. In our demonstration we chose NFFI as the common format for exchange of track

information in our infrastructure, and needed to provide all output coded in this format. OTH-

gold is a text format for, e.g., tracking. Messages can be issued whenever there is new

information available, and each track has a unique identifier. The current message can reference

previous identifiers (i.e., update or delete them) so a track store is necessary to keep an overview

of the current tracks. To convert OTH-gold to NFFI we first created a simplified OTH-gold track

store, with support for those parts of the specification used by CRIADS. This track store

connected to a TCP socket in CRIADS providing an OTH-gold feed. The track store used a

mediation service to translate OTH-gold to NFFI, and exposed the NFFI track as an NFFI SIP3

request/response service. This service was then publish/subscribe-enabled by a connection from

the JBridge4. The JBridge would invoke the NFFI track service at regular intervals, and publish

the response using WS-Notification via WSMG, a freely available implementation of WS-

Notification [12]. This approach is best used when you want to disseminate tracking information

at regular intervals, and already have an existing request/response NFFI service, and is illustrated

in Figure 3.4 below.

Figure 3.4 Web service-enabling a legacy system (e.g., CRIADS) by means of a Web services

wrapper and WS-Notification framework. (Information flow from left to right,

consumers not shown)

4 JBridge is a helper application developed at FFI that is used for publish/subscribe-enabling

request/response Web services. This is described in Section 8.3.

Legacy system
Translator and NFFI

Web service
wrapper

JBridge polling
wrapper and

publishing WS-
Notifications via

WSMG

 20 FFI-rapport 2011/02235

3.4 Web services-enabling NORCCIS II

NORCCIS II can export its tracks using several formats, NFFI included. However, the NFFI

support in the version of NORCCIS II that we used follows an older specification using NFFI

over TCP, and not the Web service interface from the current NFFI SIP3. We solved this by

creating an NFFI TCP client that we connected to the configured NORCCIS II export socket. The

tracks pushed over this socket were NFFI 1.3 formatted, i.e., they used the same schema as SIP3

does. Thus, creating a Web service wrapper was a straight forward task, where tracks received

were exposed as a SIP3 Web service. This means that even if both NORCCIS II and CRIADS are

fundamentally different systems, the Web services offered from them used the exact same

interface. Thus, the JBridge was used in this case as well, in the same manner as described above

for CRIADS.

3.5 Web services-enabling NIRIS

NIRIS (Networked Interoperable Real-time Information Services) is a middleware integration

core exploiting Internet technologies to provide a recognized air picture in near real-time. It can

export its track store in different formats. The version we got in our lab was unable to export

NFFI, but it could export NVG. NVG is a flexible XML-based format which can describe

incidents, positioning information, etc. When used for tracking, NVG contains a lot of

information which cannot be expressed by NFFI. In our NVG to NFFI conversion module we

extracted the data that could be mapped to the mandatory parts of NFFI. We used the same NFFI

Web service as for CRIADS and NORCCIS II, but in this case populating it with data converted

from the NVG interface in NIRIS.

3.6 Web services-enabling the CSD

We had an installation of the Coalition Shared Database (CSD). Its role in the SOA Pilot was

providing us with a source for images. The CSD was wrapped in a Web service that could

provide incidents with images (see Appendix A for the incident schema). The images needed to

play the scenario were loaded into the CSD by an operator at the appropriate time in the timeline,

and thus made available for publishing over WS-Notification using the framework described

below via a Web services wrapper.

3.7 Web services-enabling NORMANS

FFI develops concepts, requirements and technology for the future network enabled soldier. An

overview of the Norwegian Modular Network Soldier (NORMANS) is given in [9], and the C2I

system is presented in [10].

Previously, we have Web services-enabled NORMANS at CWID 2007. Since then the

NORMANS protocol has been revised. We created a new wrapper for NORMANS in the Viewer

in a similar manner as that used at CWID 2007 (see [11] for details of the experiment).

FFI-rapport 2011/02235 21

4 Publish/subscribe framework: OASIS WS-Notification
standard

Publish/subscribe is a well-known communication pattern for event-driven, asynchronous

communication. The pattern is particularly well suited in situations where information is

produced at irregular intervals. Simply speaking, publish/subscribe means that you will only

receive the information that you have subscribed to. This concept utilizes a combination of push

and pull. As opposed to a general push mechanism there are benefits in that you may select

(subscribe) to the information sent to you, and when using pure pull principles you are not able to

notify listeners when events occur.

4.1 WS-Notification

WS-Notification [5] is an OASIS standard defining publish/subscribe for Web services. There are

three parts in the specification:

• WS-BaseNotification [6] which defines standard message exchanges that allow one

service to subscribe and unsubscribe to another, and to receive notification messages

from that service.

• WS-BrokeredNotification [7] which defines the interface for notification

intermediaries. A notification broker is an intermediary that decouples the publishers

of notification messages from the consumers of those messages; among other things,

this allows publication of messages through a chain of proxies.

• WS-Topics [8] defines topic-based filtering using an XML model to organize and

categorize classes of events into “Topics”. It enables users of WS-BaseNotification

or WS-BrokeredNotification to specify the types of events in which they are

interested.

In summary, the specifications standardize the syntax and semantics of the message exchanges

that establish and manage subscriptions and the message exchanges that distribute information to

subscribers. For further discussion of publish/subscribe in general and WS-Notification in

particular in a military context, see [4].

4.2 Publish/subscribe in the SOA Pilot

In the SOA Pilot we used a freely available implementation of WS-Notification called WSMG

[12], which is provided as open source by the University of Indiana. The framework implements

the WS-BaseNotification standard, among other things. There are some software bugs present

that limit WSMG‟s usability, and being a student project the software is no longer maintained.

Thus, future experiments should explore alternative frameworks for offering a more complete and

reliable WS-Notification implementation5.

5 After the SOA Pilot, Project 1176 has developed its own implementation of the core parts of WS-

BaseNotification and WS-BrokeredNotification. This implementation will be used in future SOA activities

at FFI.

 22 FFI-rapport 2011/02235

5 Service discovery: OASIS WS-Discovery standard

Discovery of Web services can be performed either by utilizing a service registry, or a

decentralized non-registry based solution. There are three standards addressing Web services

discovery, two registries and a non-registry solution. The registries, UDDI and ebXML, suffer

from liveness and availability problems in dynamic environments, as described in [3]. The third

standard for Web services discovery is WS-Discovery [17]. It is better suited to dynamic

networks than the registries in that it is a decentralized discovery mechanism, thus removing the

single point of failure that a centralized registry constitutes.

We attempted to use WS-Discovery in a type of disadvantaged grid, and found that it was

unsuitable for use there since it generated too much traffic in the network and flooded the modem

buffers, as described in [19]. If we can reduce the overhead of WS-Discovery, however, it may be

better suited for use in military networks as well. Recent work by the W3C regarding efficient

XML interchange (EXI) can potentially make WS-Discovery suitable for both civil and military

networks. For evaluation purposes we have combined an open source implementation of WS-

Discovery with an open source implementation of EXI.

5.1 WS-Discovery overview

WS-Discovery is the newest standardized Web services discovery mechanism. After being a draft

since 2005 [16], it became a standard in 2009 [17]. WS-Discovery is based on local-scoped

multicast, using SOAP-over-UDP [18] as the advertisement transport protocol. Query messages

are called probe messages. Services in the network evaluate probes, and respond if they can

match them. To ease the burden on the network, WS-Discovery specifies a discovery proxy (DP)

that can be used instead of multicast. This means that WS-Discovery can run in two modes,

depending on whether there is a DP available or not. However, this DP is not well-defined in the

standard. The standard fully describes the decentralized operation of WS-Discovery, but the

functionality of (and integration with) the DP is left to be implemented in a proprietary manner

for now. We evaluate only the standardized parts of WS-Discovery in this report, focusing on

decentralized operation.

5.2 Compression

Efficient XML (EFX) was one of the formats the W3C XML Binary Characterization Working

Group investigated during their work with requirements for a binary XML format. It was later

adopted by the W3C Efficient XML Interchange Working Group (EXI) as the basis for the

specification of the efficient XML format. The objective of the EXI Working Group is to develop

a specification for an encoding format that allows efficient interchange of the XML Information

Set, and to illustrate effective processor implementations of that encoding format. EFX was

originally developed by Agile Delta and provides a very compact representation of XML

information. There also exists an open source Java implementation of the EXI specification called

FFI-rapport 2011/02235 23

"EXIficient6". In this report we use the open source implementation of EXI. For further

discussion of EXI and its applicability to SOAP-over-UDP in WS-Discovery, see our paper [20].

5.3 Implementation and evaluation

An open source implementation of WS-Discovery written in Java is available from [15]. The

release at the time of the experiment (0.2.0) was only draft compliant7, but the version in the

repository adhered to the standard. We therefore downloaded the most recent WS-Discovery

revision from the open source repository (which was revision 116 at the time we performed our

experiments). The evaluation was performed in two iterations: First, we evaluated the WS-

Discovery standard on its own. Second, we evaluated WS-Discovery with added EXI

compression. For the evaluation of the standard we compiled the sources and used the software

unmodified. To evaluate the standard with EXI compression, however, we had to make some

modifications:

First, we modified parts of the SOAP-over-UDP library, where we added a new transport class

that would apply EXI compression and de-compression to outgoing and incoming UDP packets,

respectively. We enabled all the compatibility parameters for EXI (along with the parameter for

maximum compression), thus ensuring that the lexical integrity of the XML documents was

preserved. This was done to ensure that WS-Discovery functioned properly: Enabling these EXI

compatibility parameters mean that compression rate is slightly reduced, but it ensures that all

namespaces and other metadata are preserved. This is especially important if one wants to employ

security measures, as changes to the document will break cryptographic signatures.

Next, we made two changes to the WS-Discovery library, where we added our new EXI capable

transport under available transport types, and finally set this transport to be the default to be used.

Finally, we compiled the libraries and repeated the tests made with the standard implementation.

Our modified code has since been submitted back to the open source domain, so that the current

version of WS-Discovery in the repository mentioned above now also has EXI support.

We evaluated WS-Discovery using WSDLs for services such as finance, news, weather services,

etc. These WSDLs were fetched from [13] and [14], which provide lists of freely available Web

services. Also, the WSDLs from Google and Amazon‟s search services were included, yielding a

set of 100 WSDLs in total. This provided us with a representative set of interfaces (see Table 5.1)

for a wide array of Web services which we could use in our evaluation.

Minimum size Maximum size Average Standard deviation Median

1643 149342 13830 19202 8514

Table 5.1 Sizes (in bytes) for our 100 WSDL files

6 Available from http://exificient.sourceforge.net/.
7 At the time of writing, the current release is version 1.0beta1. This version adheres to the WS-Discovery

standard.

 24 FFI-rapport 2011/02235

We used Wireshark8 version 1.2.1 for Windows to capture data traffic in a small network with

two nodes. This enabled us to capture actual WS-Discovery traffic, and examine the packet

payload sizes, thus giving a foundation for further analytical study.

5.4 WS-Discovery network usage evaluation

The standardized WS-Discovery behavior is a decentralized discovery protocol. Services are

required to send UDP multicast HELLO messages that advertise when they become available.

Also, services should send UDP multicast BYE messages when they go away. If services are able

to do this, then each node will have an up-to-date view of the available services. In a dynamic

network we cannot rely on receiving all such messages. It is also possible to actively query the

network by sending PROBE messages. In order to accurately mirror the current network state of a

dynamic network probing must be used, in which case each node replies with UDP unicast

PROBE MATCH messages. This generates a lot of data traffic, but is required to ensure an up-to-

date view of the available services. The standard requires all multicast packets (i.e., HELLO,

PROBE, and BYE messages) to be sent twice, and the unicast PROBE MATCH messages to be

sent once. Since we are concerned with WS-Discovery in dynamic environments, we focus on the

HELLO, PROBE, and PROBE MATCH messages in this report.

WS-Discovery is based on a query-response model, where a multicast query (probe) triggers

unicast responses (probe match). The load incurred on the network by the number of querying

nodes (q) in a network with a total number of n nodes can be calculated using the formula below.

If all nodes should have an up-to-date view of the currently available services, then q = n,

conversely, if only one node is querying, then q = 1.

LOAD = (sizeof(probe) + sizeof(probe match) * (n − 1)) * q

In our tests the HELLO messages yielded different sizes (see Table 5.2) depending on the

different WSDLs that were published (two HELLO messages generated per WSDL).

An uncompressed PROBE message was always 581 bytes (using a generic probe querying for all

available services with no scope limitations). An EXI compressed PROBE message varied

between 272 and 274 bytes (compression varying with varying UUID and time stamp in message;

for simplicity we assume a compressed size of 273 in our calculations below as this is the average

over time). According to the standard the message had to be transmitted twice, meaning that

sizeof(probe) = 2 ∗ 581 bytes for uncompressed traffic (EXI compressed sizeof(probe) = 2 * 273

bytes).

8 Available from http://www.wireshark.org/.

FFI-rapport 2011/02235 25

Compression Minimum size Maximum

size

Average Standard deviation Median

Uncompressed 807 887 834 17,04 830

EXI 373 420 390 9,22 388

Table 5.2 HELLO message payload statistics (in bytes), calculated from HELLO messages

corresponding to the Web services described by our 100 test WSDL files. For each

Web service that is published, WS-Discovery sends two identical such messages

The PROBE MATCH varied in size with the number of services published, since it contained all

the services published by a node. Table 5.3 shows the different sizes of PROBE MATCH

messages sent by a node with 1 to 100 services published. We see that publishing just one service

incurs a lot of overhead (1092 bytes to disseminate information about it), whereas for a larger

number of services this overhead is reduced (more actual Web services porttype information in

the response compared to SOAP headers, etc). Calculating the average when publishing multiple

services (i.e., the average of the message sizes divided by the number of services) yields 497

bytes for uncompressed WS-Discovery, and 130 bytes for EXI compression. UDP can carry a

payload of 65507 bytes, meaning that WS-Discovery has a theoretical upper limit of publishing

approximately 65507/497 ≈ 131 Web services per node when considering results from our 100

WSDLs. Conversely, with EXI compression we may publish around 65507/130 ≈ 503 Web

services per node. Naturally, the number is approximate, because in practice varying namespace

lengths in different WSDLs can affect the PROBE MATCH size. We can also see that an increase

in the number of services in a PROBE MATCH leads to an increased compression rate, because

of recurring patterns in the XML encoding of the service information. For just one service, the

compression rate is 511/1092 ≈ 0.47, whereas for a 100 services the compression rate has

increased, yielding 5009/38200 ≈ 0.13.

Number of services Uncompressed PROBE MATCH EXI compressed PROBE

MATCH

100 38200 5009

80 30292 4000

60 22902 3146

40 15531 2339

20 8122 1552

10 4476 1072

1 1092 511

Table 5.3 The size (in bytes) of the unicast PROBE MATCH message sent by a node publishing

a certain number of Web services with WS-Discovery

Using the LOAD equation, we fill in values for sizeof(probe match) using values from Table 5.3,

as well as the above mentioned sizeof(probe). The number of nodes in the network, n, is varied

from 1 to 250. First, we set q = 1, meaning that only one node is querying. Figure 5.1 illustrates

 26 FFI-rapport 2011/02235

WS-Discovery‟s resource use (in megabytes) in this case when one node is querying in networks

with up to 250 nodes. This means that in such a network, for every query issued, we get the

resource use indicated by the graph.

Next, we set q = n, so that in a network of a given size, all nodes query. In both cases, this means

that the querying node(s) send PROBEs and receive(s) n PROBE MATCHES. Figure 5.2 shows

WS-Discovery‟s resource use in the case where q = n. In both graphs, all nodes are equal and

publish the same number of services. Please note that the graphs have a logarithmic Y-axis to

ease comparison between uncompressed and compressed results. We see that with an increasing

number of nodes and published services, the overall resource use increases substantially.

Uncompressed WS-Discovery

EXI compressed WS-Discovery

Figure 5.1 Resource usage of WS-Discovery when one node queries

Uncompressed WS-Discovery

EXI compressed WS-Discovery

Figure 5.2 Resource usage of WS-Discovery when all node queries

5.5 WS-Discovery in the SOA Pilot

In the SOA Pilot we used the EXI-enabled version of WS-Discovery. The library was integrated

into the Viewer, and used there to provide the user with an overview of available services. The

Viewer is further described in the next section.

FFI-rapport 2011/02235 27

6 The Viewer

The Viewer was developed by the FFI project 1176 for use as an information integration and

visualization core during the SOA Pilot. It was not intended to compete with existing

visualization systems in any way, but rather created to illustrate how existing services can be

utilized by new software, in the same manner as we used Google earth as described earlier.

Figure 6.1 Screenshot of the Viewer

The graphical user interface (GUI) of the Viewer is shown in Figure 6.1. In the middle, the map is

displayed, together with tracks received from the operational systems. The list on the right side

displays services that are available at the moment, while the left side is a chat window. The list at

the bottom shows incidents that have been reported. Based on the mapping specified in the

Viewer‟s configuration, the GUI can be, by hiding or showing the different panels described

above.

The Viewer was developed using Java, and provides functionality for consuming, visualizing,

aggregating and re-publishing services in a service oriented architecture. Specifically, the user is

able to subscribe to available services, and the Viewer will receive push-based notifications

whenever the services offer updated information. WS-Discovery was chosen for publishing and

discovering services, and the Viewer was integrated with the EXI-enabled library discussed

above.

 28 FFI-rapport 2011/02235

The Viewer‟s GUI lists all available sources found by using WS-Discovery, and when checked by

the user, the services are subscribed to using WSMG‟s client library, effectively sending a

subscription message to the WS-Notification subscription manager. The WS-Discovery messages

were created so that the portType name field would contain the human-readable service name, the

scope field would contain the service topic, and the Xaddr field would contain the WS-

Notification server address. By sending WS-Discovery probe-messages at regular intervals, the

Viewer offers liveness-information to the user, by making the GUI only display services currently

up and running.

In order to present geographic information-based services in a map, the Viewer was integrated

with OpenMap, a Java-based open source toolkit for showing map data. The toolkit fetched maps

from the Norwegian Mapping Authority (Statens Kartverk) using Web Map services (WMS).

Thus, the Viewer was able to display detailed maps over Norway in multiple scales. The XMPP

protocol was chosen for instant messaging in our experiments, as this is the de facto chat protocol

in NATO. The Viewer offers multi-user chat by integrating with Ignite Realtime‟s Smack API,

communicating with XMPP servers such as Openfire and Prosody. The Viewer‟s information

flow is illustrated in Figure 6.2.

Upon receiving incident reports, the Viewer will present the entries in a list, and when clicked

upon, a popup dialog will display detailed information about the event, together with an image of

the incident if provided.

Figure 6.2 Information flow in Viewer

In addition to consuming services, the Viewer provides functionality for aggregating information

and re-publishing it as a new COP service. For the experiment, this functionality was configured

to aggregate all geographic information based entities (Tracks), and re-publish them as a COP

service. By specifying a topic and a WS-Notification broker address, the Viewer would publish

FFI-rapport 2011/02235 29

the COP whenever its internal model changed, allowing other systems to subscribe to the COP-

topic and to receive notifications.

Being a lightweight Java-application, the Viewer can be run on many types of devices including

many tablets and even some mobile phones.

7 Security: Data diodes

Military communication systems have strict security policies, which in some cases require

ensuring that no piece of information, however small, is allowed to flow from one information

domain to another. This challenge can be addressed by having networks that are fully

disconnected from others, and moving information between domains over an air gap. However,

when there is a need for a steady flow of information into, but not out of, a system, a common

approach in military systems is to use what is known as a data diode9. Such a diode ensures that

information can only flow in one direction, from what is called the low side to the high side.

A data diode is in principle a simple concept based around a hardware device that only supports

one way communication. In addition to the hardware device, commercial diode solutions also

include software functionality that can be used to move data across the diode. One example of

such functionality would be file transfer, such as a one-way FTP service.

7.1 Web Service Communication Patterns

As mentioned previously, the basic communication between Web service entities can be divided

into three simple steps. The situation in real deployments can however be more complex, and in

this section we present the most common communication patterns in more detail, and discuss if,

and how, each of them must be adapted for use across a data diode.

Web services technology is based on two-way communication between nodes, and most

communication between parties can involve messages being acknowledged also on the Web

service level. This means that the introduction of a data diode might require changes to the

message exchange patterns between Web service entities in addition to the changes on the

transport level.

7.1.1 Service Discovery

Service Discovery is a term used for any mechanism that allows a service provider to make its

service known to potential service consumers. The traditional way to implement service discovery

for Web services is in the form of a stand-alone registry. In this case the communication with the

registry is limited to two request/response patterns, one when the service provider publishes its

services, and one when the service consumer queries the registry.

9 Also known as information diode.

 30 FFI-rapport 2011/02235

More recent service registries are not limited to function in a stand-alone manner, but have the

ability to work together in a federation, or share service information between registries. This leads

to a new set of communication patterns that must also be taken into consideration.

When two or more registries form a federation, or set up information sharing, this can be done in

one of two ways. Either the registries replicate data between them, or they use so-called federated

queries, where the queries sent to one registry is passed on to the other members of the federation.

In the latter case, the responses sent by the other registries are then consolidated, and sent back to

the requesting consumer by the original registry.

The third standard for Web service discovery, WS-Discovery, is a fully distributed solution,

which relies on IP multicast for service announcements. In this case, a service Provider will send

out a multicast message describing its services. Consumers will then either query a local cache or

send a multicast probe which the service providers will respond directly to.

In cases where several independent networks are interconnected, it is possible that the different

networks will be using different service discovery mechanisms. In this case it is possible to share

information between the different mechanisms using either a common translation format known

to both mechanisms, or by using a gateway that translates between the mechanisms. In this case,

the translation between mechanisms is performed within one network node, which means that no

new communication patterns are introduced by such an interconnection.

FFI-rapport 2011/02235 31

Discovery Type Communicating

entities

Pattern Name Pattern Description

Registry-based Service Provider

Registry

Publish The service description is sent

to the registry

Registry-based Service Consumer

Registry

Lookup/

Find

A query is sent from the

consumer, and the registry

responds

Registry-based Multiple registries Replication A registry sends its service

information to a different

registry

Registry-based Service consumer

Multiple registries

Federated query A query is sent from the

consumer, the registries share

the query and return a response

to the consumer

Distributed Service Provider

Service Consumer

(optional)

Service

announcement

The service provider sends an

announcement, which may be

received by one or more

consumers

Distributed Service Consumer

Service Provider

(optional)

Probe The consumer multicasts a

probe message, and service

providers may respond with

their matching services

Table 7.1 Service discovery communication patterns

7.1.2 Service Invocation

Once a service consumer knows of the existence of a service, it can contact the service directly.

The communication between the service and the consumer can be done according to one of two

main patterns, namely request/response and publish/subscribe.

The simplest form of communication between service and consumer follows the request/response

pattern. In this case, the consumer sends a request message to the service, which immediately

responds to the consumer.

The publish/subscribe pattern is more complex, and can involve more entities than just the service

and the consumer. The basic principle is that the consumer sends a subscription request to a

subscription manager, letting it know that the consumer is interested in all or a subset of the

information produced by the service. In this case, the subscription manager can be either the

service itself, or a separate entity. After the subscription has been established, the service provider

will send so-called notification messages to the consumer whenever there is new information

available.

 32 FFI-rapport 2011/02235

Communication type Communicating

entities

Pattern name Pattern description

Request/Response Service Provider

Service Consumer

Polling The consumer sends a

request, which the provider

responds to immediately

Publish/Subscribe Consumer

Subscription Manager

Subscribe The consumer sends a

subscription request to the

subscription manager

Publish/Subscribe Provider

Consumer

Notification The provider sends a

message containing new

information directly to the

consumer.

Table 7.2 Service invocation communication patterns

7.2 Adapting Web service communication

When adapting Web services for use with a data diode, it is important to make a distinction

between which communication patterns can be adapted, and which patterns it makes sense to

adapt. One example is service discovery; while it might be possible to adapt registries to share

service information across a diode, one need to consider the value of such information sharing. If

a service registry on the low side provides a registry on the high side with information about the

services on the low side, potential consumers on the high side will be able to discover the services

on the low side as well. These consumers will, however, not be able to invoke these services

directly, since they have no way of sending a request to the service. The only time it would make

sense to have information about the low end service available on the high side is if there is some

other means available through which the low side service can be invoked. One example of such a

mechanism could be the end user logging in on a system on the low side, and issue the request on

behalf of the high side consumer, e.g., if equipped with a multilevel security (e.g., MILS10)

terminal [22].

In this section we consider the communication patterns from Table 7.1 and Table 7.2 in turn, and

identify those patterns that will function in conjunction with a data diode.

For each pattern, we first need to identify the primary information producer. Due to information

only being able to pass from the low side to the high side, the information producer will have to

be on the low side of the diode. Note that the information producer is not always the one that

initiates the communication between the entities, which and that this might stop some patterns

from functioning across a diode.

10 Multiple Independent Levels of Security

FFI-rapport 2011/02235 33

7.2.1 Service Discovery

For the first pattern, the publish pattern, the information producer is the service, which has a

service description that it needs to pass to the registry. Having the service on the high side and the

registry on the low side would make this pattern impossible, so we concentrate on the opposite

case. A service on the low side could, by using this pattern, make its existence known to potential

consumers on the high side. The high side consumers on the other hand, would not be able to

contact the service directly. Therefore, this pattern is only useful if the consumers either simply

want to know which services are available (but do not plan on using them), or if they have

another way of contacting the service on the low side. The latter can be achieved by, for instance,

the user logging in on the low side and subscribing to information that is later pushed through the

diode to the high side.

A similar pattern is the replication pattern, in which cooperating registries share service

information. This pattern can be used for one-way information sharing, in which all or a part of

the content of the low side registry is copied into its partner registry on the high side.

Interconnecting registries in this manner does not allow for automatic usage of the services on the

low side (as the high side consumers cannot contact these services), but it can still be useful. It

makes the high side users aware of which capabilities exist on the low side, which enables them

to perform manual set-up of communication from the low side to the high side by for instance

contacting the service owner, or logging in on the low side as described above.

The two other registry related patterns, namely the lookup/find pattern and the federated query

pattern, both rely on information being provided as a direct response to a query initialized by the

service consumer. The strict two-way demand of these patterns means that neither of them will

function in conjunction with a diode.

Distributed service discovery is intended for use within a single network, and relies on multicast.

Under the assumption that cross-diode multicast traffic is supported, the service announcements

may cross from the low to the high domain. It does however suffer from the same usage

limitations as the registry publish pattern.

WS-Discovery, the only standardized distributed Web service discovery solution, uses a pattern

similar to the request/response invocation pattern for its probes. Both the probe and the probe

match are of equal importance, and none can be omitted. This means that probing is not possible

across a diode.

7.2.2 Service Invocation

The request/response pattern, which is the most common invocation pattern for Web services,

relies on the consumer first issuing a request which the service then responds to. In most cases,

the primary information producer is the service, whose response supplies the consumer with the

requested information. The service cannot be made responsible for initiating the communication

because it has no way of knowing which consumers will be interested in the information it can

 34 FFI-rapport 2011/02235

supply. Because of the synchronous nature of this pattern, its usefulness across a diode is fairly

limited.

However, there exist a few potential service types where the majority of the information is carried

in the request. These services, such as event logging services (reporting alarms from a software

system etc), could function even if the response is not delivered to the consumer. These services

would then function on a best-effort basis, since reliable delivery cannot be guaranteed, making it

unsuitable for critical systems.

The other Web service invocation paradigm, publish/subscribe, relies on two patterns that are

executed in order. The first step is the subscription pattern, which is generally executed once,

which leads to the notification pattern being executed a number of times in the opposite direction.

In the subscription pattern the eventual service consumer acts as both the information provider

and the initiating entity, and supplies either the service or an external third party, a subscription

manager, with its request for information. Even if the subscription pattern, seen isolated, can

function from the low to the high side of a diode, its usefulness is limited when executed in this

manner. This is because the subscription pattern is only an initial step in setting up the

notification pattern, in which the information flow goes in the opposite direction of the

subscription pattern.

The notification pattern is a one-way concept, where the service periodically sends a notification

message to the service consumer without needing a reply. This means that notifications are well

suited for use across diodes, but the service does rely on first having received a subscription

message (either directly, or by delegating this responsibility to a subscription manager).

The WS-Notification standard, which is one of the two Web service notification standards, does

allow for a third party to issue this subscription request on behalf of the service consumer [6,

references therein]. This means that it is possible for a user on a high system to receive

notifications from a low system without having initiated the subscription herself. If the user can

either log in to the low system to issue the request, or have a user in the low system issue the

request for them, notification can flow from the low to the high systems without requiring any

feedback from the high side.

7.3 Proof-of-Concept Implementation

As previously mentioned, making Web service technology function one way across data diodes is

best done by using an alternative transport binding (e.g., SOAP-over-UDP), in addition to the

adaptations that have to be made on the Web service level. However, since most existing Web

service solutions use the standard HTTP over TCP binding, we have implemented a solution that

shows that is it possible to make these Web services function without any significant

modifications to the service or consumer software. The only modification necessary is to adapt

the addresses used so that the communication goes via a Web service proxy.

The data diode we used in our experiments is a proprietary prototype, which in addition to the

fiber-based hardware, has software that supports automatic duplication of files across the data

FFI-rapport 2011/02235 35

diode. Commercial diodes can support more advanced communication patterns than this, but the

prototype we used for our experiments was sufficient for our proof-of-concept implementation.

Our proof-of-concept implementation and test use a piece of diode hardware, which ensures that

information can only flow one way through it. In other words, it is a data pump capable of

moving data from a domain of low classification to a domain of high classification. The diode

comes with custom software, which can be configured to achieve the desired operation. The make

and model of the diode and software is not important, because several products which all offer

similar characteristics and high assurance exist. It suffices to say that we configured the software

to take immediate action whenever new data was available, so that when new data became

available in the low domain, it would be pushed to the high domain as soon as possible.

The diode is traditionally used to move data files across domain boundaries, often with a manual

review and release inspection step along the way. Since we wanted to allow Web services traffic

to flow across the domain, we set up a directory with the proper rights so that any new file (or

update to an old file) which was placed in that directory would be duplicated in the high domain

in a corresponding directory structure. This gave us the necessary infrastructure to enable one-

way Web services invocations across classification domains, by going through an intermediary

file which could be moved by the diode.

One of the main reasons for using Web services is that the technology is founded on standards11,

which ease interoperability and reduce chances of vendor lock-in. Thus, for our proof-of-concept

implementation we have strived to employ standards according to what is defined in NATO Core

Enterprise Services [28] where possible.

Figure 7.1 Proof-of-concept architecture

Figure 7.1 gives an overview of our setup, where the circles indicate COTS implementations

following Web services standards (i.e., W3C Web services where the interfaces are defined by a

WSDL, and information exchange is performed over the SOAP protocol). Typically, Web

services use HTTP/TCP as transport for the SOAP messages. However, when we have a diode as

a gateway between networks, TCP (being bi-directional) will not function. Along the same lines,

even Web services which do not have a return parameter usually need some acknowledgement on

the HTTP layer for the completed transaction. As a consequence, we need a piece of software on

both sides of the gateway that can function as a wrapper service and a wrapper client,

11 Web services are defined in the WS-* suite of standards and recommendations. Furthermore, the

definition of the NATO Core Enterprise Services [28] builds to a large extent on the WS-* suite.

 36 FFI-rapport 2011/02235

respectively. We implemented a service wrapper in the low domain using the WSDL from the

Web service we want to submit data to in the high domain. This ensures that to a client, the two

are not distinguishable and can be used interchangeably. Thus, the COTS Web service client in

the low domain is able to invoke our service wrapper without modification. Conversely, in the

high domain we have created a client using the same WSDL, so that data posted by the COTS

client can be submitted to the COTS service in the high domain once the data has passed through

the diode. This means that the COTS client can use SOAP over HTTP/TCP when connecting to

our service wrapper, whereas our custom client can use the same protocol suite when connecting

to the COTS Web service. This allows us to use existing services and clients over a diode,

provided the services are information sinks only (i.e., they do not need to issue any data as a

response to the invocation). For each such service that we want to expose in the low domain, we

must create a service wrapper and custom client that can accommodate SOAP messages over the

diode. Since the diode we used operated on file structures, the service wrapper would take

incoming requests, serialize the XML to a file, and then place this file in the directory structure

the diode software was monitoring. In the high domain, our custom client was monitoring the

corresponding directory structure, so that when the diode software had moved new data across

from the low domain it would be read by our custom client. Our client could then de-serialize the

XML, and use this as its data when invoking the Web service.

This experiment was performed to investigate the viability of Web services over a data diode (see

our paper [21] for the complete discussion). Data diodes are a legacy solution, however, and in

the SOA Pilot we used a more flexible prototype solution as described below12.

7.4 Security in the SOA Pilot

Data diodes are the current way of realizing communication security for information flows

between different domains. However, as described above, this is quite restrictive as it does not

allow any information whatsoever to flow from the high to the low domain. In the SOA Pilot, an

experimental XML guard gateway was used instead to secure the information in the networks.

For complete details, see the report on security [26].

8 Recommendations and lessons learned

The complete SOA Pilot was a complex and heterogeneous system, with a large number of

autonomous parts that were interconnected. In addition, several of the operational systems are

difficult to use, normally requiring trained personnel. Thus, it was a challenging task making

everything run at once. The main cause of this, however, was the choices we made with respect to

infrastructure software. This will be further explained in this Section.

12 The diode experiment was performed on request from the procurement project P8009, and is therefore

included in this report, even though diodes were not used.

FFI-rapport 2011/02235 37

8.1 WS-Notification infrastructure (WS-Messenger)

Our original plan was to use an implementation of WS-Notification developed by IABG

(Germany) as part of the CoNSIS project13. However, the deliverance of the software was delayed

to such an extent that we were forced to find an alternative. We chose to use a freely available

implementation called WS-Messenger (WSMG) [12], which is provided as open source by the

University of Indiana. Part of the reason for this choice was that we had some previous

experience with this software.

When used in the SOA Pilot, however, WSMG displayed a number of shortcomings, and it was

the main cause of difficulties and errors in the pilot. The main problems of WSMG were:

 Proprietary tags in notification messages, meaning that the notification receiver had to be

tailored for use with WSMG.

 No support for XML in the payload, which meant that the payload had to be Base64

encoded.

 If WSMG was unable to deliver a notification to a subscriber (for instance because the

subscriber had crashed), it would cease submitting notifications to all subscribers of that

topic. Instead, it would start buffering the notification, pending the return of the missing

subscriber. This behavior was a major cause of delays in the experiments, since one

subscriber crashing or losing connection would mean that everything had to be set up

again from the start.

 WSMG has no easy way to delete subscriptions from the server. Instead, it was necessary

to run an SQL script to delete the entry from the database. In a test environment where

clients may be unstable, this was an annoying factor that slowed down the experiments.

 Finally, WSMG proved to scale poorly, even in a relatively small setup like ours.

Consequently, we will advise against using WSMG for WS-Notification, even in a test

environment. It should also be noted that since WSMG is a student project, support and further

development of the software is relatively uncertain.

In addition to WSMG, we did some brief testing with Apache Servicemix, an open-source ESB

that supports WS-Notifications. The version we tested, 3.2.3, had several limitations:

 It was not 100% standards compliant. Among other things, the notifications were not sent

as SOAP messages, but instead in a more REST-like way. This means that subscribers

must be tailored for use with Servicemix. Also the required format of the subscribe

messages deviated from the standard.

 Subscriptions could not be deleted without stopping and restarting the entire Servicemix

instance.

13 Coalition Network for Secure Information Sharing

 38 FFI-rapport 2011/02235

Thus, we cannot recommend using Servicemix version 3.2.3 for WS-Notification. Later versions

may have better support, though, but we have not looked into this. However, it should also be

noted that being a complete ESB, Servicemix is a large and complex system with a considerable

learning curve and it also takes quite some effort to configure it. This means that using

Servicemix only as a WS-Notification framework may be considered as overkill.

As mentioned earlier, after the SOA Pilot was finished, Project 1176 developed its own

implementation, called „microWSN‟, of the core parts of WS-BaseNotification and WS-

BrokeredNotification. This is a dedicated piece of software that only focuses on WS-Notification.

We plan to use microWSN in future SOA activities at FFI that require publish/subscribe.

However, microWSN is not intended for a production environment, in particular because it does

not implement the entire WS-Notification standard. However, it should be no problem to extend it

to support the full standard, if required. We are also considering releasing microWSN as an open

source project, although no decision has been made yet on this.

8.2 Wrapper software

The actual principle of wrapping existing software with a Web services front-end works very

well. Since Web services normally are stateless, the wrapper is relatively simple to implement,

and with a WSDL file available, parts of it can be auto-generated.

On the other hand, the complexity of the wrapper is dependent on the type of connection it has

into the actual operational system. Several of the systems offered an outgoing TCP connection

that the wrapper was listening to. The messages received on the TCP socket were then

transformed to an XML document and made available on the request/response interface.

As mentioned earlier, we only received information from the systems; we did not send

information or commands into the system through the wrapper. Consequently, we had a rather

weak integration between system and wrapper. The main reason for this is that the operational

systems are large, complex systems with closed source code. It was not possible for us to

interface directly with the internals of these systems, and we had to manage with whatever out-

channels that were available, and the information provided through these.

This means that programming Web services wrappers for production use should be done by the

vendor of the system in question. When new systems, or new version of systems, are purchased,

Web services interfaces should be included as part of the specification, to avoid having to retrofit

such interfaces.

Finally, in the process of transforming the networking and information infrastructure (NII) into a

service oriented architecture, it is important to think beyond just Web services enabling existing

systems. By turning systems into services, they become available to a much broader community

than the existing, often stove-piped, systems are. This fact should be taken advantage of by

analyzing business processes and required data flows in order to establish which interfaces are

required and where. For instance, in some cases it may be advantageous to break existing

FFI-rapport 2011/02235 39

monolithic systems into smaller, individual modules. In other cases, it may be necessary to go the

other way and service enable an entire network (i.e., the entire network appears as a single service

to the outside world. In the SOA Pilot, service enabling of both NORMANS and the sensor

networks are examples of the latter).

8.3 JBridge

The JBridge is a helper application developed at FFI that is used for publish/subscribe-enabling

request/response Web services. This is done by having a JBridge instance polling a

request/response Web service at pre-defined intervals, and each time compare the response with

the previous one (see Figure 8.1). If the response has changed, it is sent to the WSMG broker as a

new notification (it is also possible to configure the JBridge to send a notification every time it

polls, regardless of whether the response has changed or not).

Operational
system

W
eb

 services
w

rap
p

er

JB
rid

ge

WS-
Notification(Payload) WS request/

response
Notify Notify

Figure 8.1 Using JBridge to Publish/subscribe-enable request/response Web services

The JBridge was only intended as a helper component for use in the SOA Pilot. It was introduced

because we wanted to avoid having to use WSMG libraries in the wrapper to enable publisher

functionality. Instead of building the publisher functionality into each wrapper individually, we

chose to make one generic component that could be used in front of all Web services enabled

operational systems. However, the JBridge brought increased complexity into the pilot, and it did

represent an additional source of possible errors.

When Web service enabling operational systems in the future, we therefore strongly recommend

that the publisher functionality is integrated into the Web services wrapper. Furthermore, when

building new systems that support Web services in the first place, it is also important that the

publisher functionality is included. In cases where integration of publisher functionality is not

possible, the poller function (i.e., the JBridge equivalent) should be located on the same machine

as the actual Web service, in order to avoid network traffic.

It should also be noted that although we used NFFI as data format, we did not use the

publish/subscribe mechanism specified by NFFI SIP3 [23], which is WS-Eventing [24]. Since

both Norway and NATO have chosen WS-Notification as the standard for publish/subscribe in

the NII, it does not seem reasonable to deviate from this standard for one single data format.

 40 FFI-rapport 2011/02235

8.4 Service discovery

Our chosen mechanism, WS-Discovery, is a decentralized service discovery mechanism intended

for use in local area networks, relying on UDP multicast for disseminating information.

Consequently, WS-Discovery can only be used in networks that support multicast, and this is not

necessarily the case for all types of military networks. It is also a relatively “chatty” mechanism,

which means that it should not be used on networks with very limited bandwidth. As described in

Section 5, some measures can be introduced (e.g., compression) in order to reduce the network

traffic.

Our work in the SOA Pilot shows that WS-Discovery works fine over medium bandwidth radios

like the Kongsberg WM600, while it is not possible, even with compression, on radios with very

low bandwidth, such as the MRR.

WS-Discovery works very well when it comes to liveness, i.e., the announced services reflect

quite well which services are actually available.

It should also be noted that WS-Discovery is only intended for run-time use. This means that a

query for a service will only return the endpoint address of that service, not the WSDL.

Consequently, it is only possible to invoke services that you already have a client for, i.e., that

you have previously downloaded a WSDL for the service, generated the client stub and integrated

this with the client software. This is not a problem, however, since the required WSDLs are

normally obtained during design time, either by using a registry and repository, or by

downloading them directly from the service provider.

There is a more general problem concerning publish/subscribe and service discovery, though, that

also affects WS-Discovery, and that is that all service discovery mechanisms (as the name

implies) focus on discovery of services. The problem is that seen from a WS-Discovery point of

view, all publish/subscribe (WS-Notification) services are equal. They all provide the same

service (which is to deliver notifications), but they can provide notifications on different topics.

Consequently, the information about which topics each service published on had to be distributed

beforehand.

Furthermore, in the SOA Pilot, our focus was to demonstrate service enabling of existing

operational systems. Therefore, the services announced through WS-Discovery reflected the

underlying operational system. In a real-life system, it is more likely that the user will select

services mainly based on the information it offers (i.e., the topics), and not only based on which

operational system that provides it.

It is clear that when using publish/subscribe for information dissemination, it is necessary to focus

both on how to search for and discover available topics, and also the semantics of topics, i.e., how

to structure the description of the information in the notifications into topics and subtopics.

FFI-rapport 2011/02235 41

8.5 DSProxy

In the SOA Pilot, we used DSProxy on the MRR connection between the sensor network and the

main network, as shown in Figure 2.7. The MRR represents a considerable challenge when using

Web services, since the available bandwidth is very low.

The DSProxy, being intended for low bandwidth networks, worked very well, and we

successfully invoked the Web service on the gateway of the sensor network. However, we did

identify a couple of problems that we will focus on in our work with the DSProxy:

 No support for HTTP-chunking. The consequence of this is that the DSProxy can only be

used on Web services that are hosted on IIS (Internet Information Server) from

Microsoft.

 No support for IPv6. This was not a problem in the SOA Pilot, but should nonetheless be

fixed.

Note that these are not design problems, but rather related to the concrete implementation. In our

further work we will test alternative libraries for HTTP support, in order to solve these problems.

For more information on the DSProxy, see [27].

8.6 Format translation

In the SOA Pilot we had to handle a number of different formats on the data coming from the

different operational systems. For tracks, these included OTH-gold, NVG and proprietary

formats, and all were translated into NFFI, which we used internally.

The translation was done programmatically, i.e., we did not use XSLT. This was mainly because

XSLT engines are normally a part of ESBs, which we did not use. The translation code was

placed within the wrapper, and the main reason for this was that messages in the OTH-gold

format refer to earlier messages, and thereby required state. Thus, for those systems that delivered

messages on OTH-gold format, we had to break the principle of Web services not having state.

However, this was still considered the easiest solution.

In general, translation of formats should be done as separate services, known as mediation

services, part of the NATO Core Enterprise Services [28]. Only when translation from non-self-

contained message formats such as OTH-gold is required, may the translation function be

integrated in the wrapper. Thus, as a rule, message-formats used in SOA environments should be

self-contained.

Another challenge when integrating information of different formats is loss of information. For

instance, when translating from NVG to NFFI, relatively much information is lost. If, at a later

stage, it is necessary to translate back from NFFI to NVG, a lot of the original information has

been lost. There are also examples of the opposite problem; when translating from OTH-gold to

NFFI, it is necessary to add information that is required in NFFI, but lacking in OTH-gold, since

 42 FFI-rapport 2011/02235

the latter is a much simpler format. This is either information that is derived, or it is “dummy”

information.

In general, when introducing SOA, which data formats to use and how to handle them is a matter

that needs careful consideration. Closely related to this, it is very important to be aware of how

data flows between systems, and what to do with circular data. That is, data that origin in on

system, flows to another system, and then eventually (possibly via further systems) flow back into

the originating system. This may lead to false confirmation of data, i.e., where users of system A

believes data has been confirmed by system B, while system B have actually just returned data it

has received from system A. Thus, managing data origin will probably be very important.

9 Conclusion

The SOA Pilot was demonstrated at FFI in June 2011 in cooperation with NC3A. Our goal was to

give a practical demonstration of some of the benefits of using a service-oriented architecture. We

started with a number of existing military operational systems and service-enabled these by using

so-called wrappers. All these systems were then connected in a common information

infrastructure, offering their information through services.

From a practical point of view, we had two main challenges during the execution of the pilot:

 Setting up and using several large and complex operational systems was a non-trivial task

 Our choice of software implementation of the WS-Notification infrastructure caused a lot

of problems. However, we have later implemented our own, standalone WS-Notification

module that will be used in future experiments, as explained in Section 8.1.

As a demonstration of the benefits of SOA, however, we consider the pilot a success. We proved

that service-enabling of existing operational systems is a manageable task, although it should

preferably be done by the system vendors. Also, new systems should be designed as services from

the start.

We also showed that once the systems are service enabled and deployed in a SOA infrastructure,

this gives a whole new flexibility with respect to information dissemination and being able to

dynamically configure and reconfigure an information infrastructure. We therefore recommend

that the experiences from this pilot are taken further by the Norwegian Defense for realizing a

common information infrastructure.

FFI-rapport 2011/02235 43

References

[1] “Pervasive web services discovery and invocation in military networks”, F.T. Johnsen,

FFI-report 2011/00257.

[2] “Integrating Wireless Sensor Networks in the NATO Network Enabled Capability using

Web Services”, J. Flathagen and F.T. Johnsen, IEEE MILCOM 2011

[3] “Interoperable service discovery - experiments at Combined Endeavor 2009”, F.T.

Johnsen, J. Flathagen, T. Hafsøe, M. Skjegstad, N. Kol, FFI-report 2009/01934

[4] “Information exchange in heterogeneous military networks”, K. Lund, T. Hafsøe, F.T.

Johnsen, E. Skjervold, A. Eggen, L. Schenkels, J. Busch, FFI-report 2009/02289

[5] OASIS WS-Notification (2006) TC

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn

[6] WS-BaseNotification 1.3 OASIS Standard, approved October 1st 2006

http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-os.pdf

[7] WS-BrokeredNotification 1.3 OASIS Standard, approved October 1st 2006

http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-os.pdf

[8] WS-Topics 1.3 OASIS Standard, approved October 1st 2006

http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf

[9] “Norwegian Modular Network Soldier (NORMANS)”, R. Lausund, S. Martini”, FFI Facts,

November 2006

[10] “NORMANS KKI” (in Norwegian), J. Flathagen and L. Olsen, FFI Facts, November 2006

[11] “Experiment report: „SOA – Cross Domain and Disadvantaged Grids‟ – NATO CWID

2007”, R. Haakseth et al., FFI-report 2007/02301

[12] WS-Messenger (WSMG) home page

http://www.extreme.indiana.edu/xgws/messenger/

[13] WebserviceX.net home page

http://www.webservicex.net/

[14] Web Service List home page

http://www.webservicelist.com/

[15] A WS-Discovery implementation written in Java home page

http://code.google.com/p/java-ws-discovery/

[16] “Web Services Dynamic Discovery (WS-Discovery)“ J. Schlimmer (editor).

http://specs.xmlsoap.org/ws/2005/04/discovery/ws-discovery.pdf, April 2005.

[17] “Web services dynamic discovery (ws-discovery) version 1.1 OASIS standard 1 july 2009”

V. Modi, and D. Kemp (eds.)

http://docs.oasis-open.org/ws-dd/discovery/1.1/wsdd-discovery-1.1-spec.pdf

[18] “SOAP-over-UDP version 1.1 OASIS standard 1 july 2009” R. Jeyaraman (ed.)

http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/os/wsdd-soapoverudp-1.1-spec-os.pdf

[19] “Multinett II: SOA and XML security experiments with Cooperative ESM Operations

(CESMO)”, F.T. Johnsen et al., FFI-report 2008/02344

[20] “Adapting WS‐Discovery for use in tactical networks”, F.T. Johnsen and T. Hafsøe, 16th

ICCRTS, June 2011.

[21] “Employing Web services between domains with restricted information flows”, T. Hafsøe

and F.T. Johnsen, 16th ICCRTS, June 2011.

 44 FFI-rapport 2011/02235

[22] “Multiple independent levels of security (MILS) – a high assurance architecture for

handling information of different classification levels”, T. Gjertsen and N.A. Nordbotten,

FFI report 2008/01999

[23] “NFFI Service Interoperability Profile 3 (SIP3) Technical Specifications (Version 1.1.5)”,

Vincenzo de Sortis, Working Paper EPW002625-WP05, NC3A, The Hague, March 2009

[24] “Web Services Eventing (WS-Eventing)”, http://www.w3.org/TR/ws-eventing/, W3C

Proposed Recommendation, 27 September 2011

[25] “Experiment Report: SOA Pilot 2011 “, R. Rasmussen, FFI Report 2011/02407

[26] “Towards a certifiable MILS based workstation “, N. A. Nordbotten, T. Gjertsen, FFI

report 2012/00049

[27] “Robust Web Services in Heterogeneous Military Networks, Lund, K., Skjervold, E.,

Johnsen, F. T., Hafsøke, T., Eggen, A., IEEE Communications Magazine, Vol. 45, No. 10,

October 2010, pp. 78-83

[28] NATO Core Enterprise Services Standards Recommendation, The SOA Baseline Profile,

Version 1.7, Jan 2012

http://www.w3.org/TR/ws-eventing/

FFI-rapport 2011/02235 45

Appendix A FFI SOA pilot incident format schema

<?xml version="1.0" encoding="UTF-8"?>

<!--

 FFI SOA pilot incident format v1.1

 fields:

 name (mandatory) - incident name

 id (mandatory) - unique incident ID (e.g., system+nr)

 dateTime (mandatory) - incident timestamp

 longitude (optional) - position, if applicable

 latitude (optional) - position, if applicable

 originSystem (mandatory) - system where the incident occurred

 sender (mandatory) - system sending this report

 incidentDescription (mandatory) - text describing the incident

 picture (optional) - base64 encoded image, if applicable

-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="urn:no:ffi:reports:incident"

 xmlns:tns="urn:no:ffi:reports:incident"

 elementFormDefault="qualified">

 <xsd:element name="Incident">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element name="name" type="xsd:string"></xsd:element>

 <xsd:element name="id" type="xsd:string"></xsd:element>

 <!-- ISO 8601 in the format YYYYMMDDhhmmss format (14 digits) -->

 <xsd:element name="dateTime">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="\d{14}"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="latitude" type="xsd:double" minOccurs="0"></xsd:element>

 <xsd:element name="longitude" type="xsd:double" minOccurs="0"></xsd:element>

 <xsd:element name="originSystem" type="xsd:string"></xsd:element>

 <xsd:element name="sender" type="xsd:string"></xsd:element>

 <xsd:element name="incidentDescription" type="xsd:string"></xsd:element>

 <xsd:element name="picture" type="xsd:base64Binary" minOccurs="0"></xsd:element>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

