

FFI-rapport 2012/00490

Design and Implementation of an Augmented Reality System
for VBS2

Per-Idar Evensen

Norwegian Defence Research Establishment (FFI)

29 March 2012

 2 FFI-rapport 2012/00490

FFI-rapport 2012/00490

115602

P: ISBN 978-82-464-2058-5
E: ISBN 978-82-464-2059-2

Keywords

Augmented Reality

VBS2

Spillbasert simulator

Modellering og simulering

Approved by

Halvor Ajer Project Manager

Johnny Bardal Director

FFI-rapport 2012/00490 3

English summary
This report describes the implementation of an Augmented Reality (AR) system for Virtual
Battlespace 2 (VBS2). The AR system is developed using VBS2Fusion, which is a C++ based
application programming interface (API) for VBS2. VBS2Fusion has functionality that makes it
possible to implement graphical overlays in VBS2.

The AR system is designed for use in combat vehicles like Infantry Fighting Vehicles (IFV) and
Main Battle Tanks (MBT), and gives the commander, gunner and driver information in the form
of graphical symbols in their sights and periscopes. The system works together with an
experimental Battlefield Management System (BMS) developed at FFI, and visualizes
information from the BMS.

The AR system was developed in order to be able to experiment with the design of AR
functionality in combat vehicles in a simulated environment, and to evaluate the benefit of this
kind of functionality in combat. The system was used in a large experiment in FFIs Battle Lab in
November 2011.

 4 FFI-rapport 2012/00490

Sammendrag
Denne rapporten beskriver implementeringen av et Augmented Reality (AR) system for Virtual
Battlespace 2 (VBS2). AR-systemet er utviklet ved hjelp av VBS2Fusion, som er et C++-basert
programmeringsgrensesnitt (API) mot VBS2. VBS2Fusion har funksjonalitet som gjør det mulig
å implementere grafiske overlegg i VBS2.

AR-systemet er laget for bruk i militære kjøretøy som stormpanservogner (IFV) og stridsvogner
(MBT), og gir vognkommandør, skytter og vognfører informasjon i form av grafiske symboler i
sine siktebilder og periskop. Systemet virker sammen med et eksperimentelt Battlefield
Management System (BMS) utviklet ved FFI, og visualiserer informasjon fra BMS-et.

AR-systemet ble utviklet for å kunne eksperimentere med utforming av AR-funksjonalitet i
stridkjøretøy i et simulert miljø, og å evaluere nytten av slik funksjonalitet i strid. Systemet ble
brukt i et stort eksperiment i FFIs Battle Lab i november 2011.

FFI-rapport 2012/00490 5

Contents

1 Introduction 7

2 Augmented Reality 8
2.1 Technology 9
2.2 Military applications 11
2.3 Simulated AR 12

3 Virtual Battlespace 2 13
3.1 Scripting in VBS2 14
3.2 VBS2Fusion 15

4 Functionality in the AR system 16
4.1 Starting the system 16
4.2 AR objects 17
4.3 Blue Force Tracking 19
4.4 Observations 19
4.5 Laser Range Finder 20
4.6 Voice recognition 21
4.7 Scaling 22
4.8 Occlusion by terrain 23
4.9 Symbol clamping 23
4.10 Simulated system delay 24
4.11 Configuration file 25

5 Implementation of the AR system 26
5.1 System setup 26
5.2 AR graphics engine 27
5.3 BMS communication 29
5.4 Terrain occlusion effect 30
5.5 Drawing text with high visibility 32
5.6 Performance of the system 33

6 Summary 33

References 34

Abbreviations 35

 6 FFI-rapport 2012/00490

FFI-rapport 2012/00490 7

1 Introduction
The work with designing and implementing an Augmented Reality (AR) system for Virtual
Battlespace 2 (VBS2) has been done under FFI-project 1156, “Technologies for Military
Vehicles”. The simulated AR system was used in a large simulator experiment in FFIs Battle Lab
in November 2011, where six professional Infantry Fighting Vehicle (IFV) crews from the
Telemark Battalion (TMBN) participated for one week. The experiment consisted of a number of
relevant scenarios for combat vehicles played in VBS2.

The purpose of this experiment was to evaluate the usefulness of AR functionality in combination
with a Battlefield Management System (BMS) in combat vehicles. The observations we did in
this experiment, and the feedback we got from the users, will be used as input to the ongoing
process of designing a real AR system for combat vehicles. The results from this experiment are
described in [1]. The details of how the experiment was conducted are described in [2].

At FFI we first started to experiment with simulated AR in an in-house developed combat vehicle
simulator called NORBASE (Norwegian Battle Simulator Experiment) in 2006. NORBASE was
based on the commercial game Unreal Tournament 2004, and was used in an experiment in
November 2006 [3]. Figure 1.1 shows images from the AR system in NORBASE. The AR
objects in NORBASE where drawn directly into the scene, and not as a graphical overlay as we
now do in it VBS2.

Later NORBASE was replaced by VBS2, and in 2009 an attempt was made to develop an AR
system for VBS2 for an experiment in May 2009 [4]. At that time VBS2 had very limited
functionality for drawing graphical overlays, and there were no easy way to map between world
coordinates and screen coordinates using the VBS2 scripting language. The AR system therefore
became very primitive, and did not have all the desired fuctionality. It was first when
VBS2Fusion version 2.0 was released at the end of 2010 that it became possible to implement an
AR system for VBS2 which included all the functionality that we wanted to test out. VBS2Fusion
is a C++ based Application Programming Interface (API) for VBS2. From version 2.0 it has
functionality that makes it possible to develop graphical overlays in VBS2.

Our simulated AR system is designed for use in combat vehicles like Infantry Fighting Vehicles
(IFV) and Main Battle Tanks (MBT), and gives the commander, gunner and driver information in
the form of graphical symbols in their sights and periscopes. The system works together with an
experimental Battlefield Management System (BMS), also developed at FFI, and it visualizes
information like Blue Force Tracking (BFT) and observations received from the BMS. The
vehicle crew can thus keep their eyes constantly on the battlefield in critical situations, and at the
same time get important information from the BMS.

 8 FFI-rapport 2012/00490

Figure 1.1 The AR system in NORBASE from the early experiments with simulated AR in 2006.

This report first gives a general description of Augmented Reality in Chapter 2. Here we look at
the underlying technology, and some applications of AR systems. Next, in Chapter 3, we describe
the training and simulation toolkit VBS2, and the C++ based API VBS2Fusion. In Chapter 4 we
describe and illustrate the functionality in our simulated AR system for combat vehicles. Finally,
the details of the implementation of the AR system are described in Chapter 5.

The AR system described in this report was developed and tested with version 1.5 of VBS2 and
version 2.5.2 of VBS2Fusion. This report describes the AR system and how it was implemented
at the time this report was published.

2 Augmented Reality
Augmented Reality (AR) is a technology where virtual, computer generated data are added to the
data we perceive from the real world, in real time. This gives the user an augmented perception of
the reality. Mainly AR means adding virtual objects in the form of computer graphics to visual
data from the real world. The virtual objects typically add information that helps the user perform
real-world tasks.

The phrase “Augmented Reality” is supposed to have been coined by Thomas P. Caudell in 1990,
while working at Boing helping workers to assemble cables into aircrafts, but the concept has
been around before this. More general information about AR can be found in [5] and [6]. In these
papers, AR is defined as a system that has the following three properties:

1. Combines real and virtual objects in a real environment.
2. Runs interactively, and in real time.
3. Registers (aligns) real and virtual objects with each other.

FFI-rapport 2012/00490 9

AR is not necessarily limited to our sense of sight, and can potentially apply to other senses like
hearing, touch and smell. Some AR applications also require removing real objects from the
perceived environment, in addition to adding virtual objects. A key measure of AR systems is
how realistically they integrate the augmentations with the real world.

Examples of areas where AR has been applied are medical visualization, radiation and hazard
visualization, assembly, maintenance and repair, visualization within architecture and
construction, navigation in aircraft and cars, and entertainment. Conceptually, anything not
detectable by human senses but detectable by sensors might be transduced into something that a
user can perceive in an AR system. Figure 2.1 shows some examples of AR applications. In
Section 2.2 we take a closer look at military applications of AR.

Figure 2.1 Examples of AR applications: visualization of radiation (AR-Lab), visualization of
windmills (AR-Lab), HUD in cars (BMW) and smartphone apps (Samsung).

2.1 Technology

An AR system consists of the following components:

• A display device that shows the real world together with the virtual objects. This can be a
monitor, a Head-Mounted Display (HMD) or a special optical see-through HMD. If a
monitor or a standard closed-view HMD is used, a video camera is needed to capture the
real scene. An optical see-through HMD is partially transmissive, so that the user can
look directly through it and see the real world. It can also display images from a
computer.

 10 FFI-rapport 2012/00490

• A tracking system for accurately tracking the user's viewing orientation and position. The
system needs this information to calculate the position and orientation of the virtual
objects. Possible technologies for a tracking system are digital cameras or other optical
sensors, GPS receivers and Inertial Measurement Units (IMU).

• A virtual scene generator to render the virtual objects at the correct positions. This is
usually a computer with AR software.

In addition an AR system might include devices for interaction with the system. Figure 2.2
illustrates the concept behind an AR system. To get really good AR systems, where the virtual
objects appear so realistic that they are virtually indistinguishable from the real environment,
there is need for further development and new technology for both display devices and tracking
systems.

Figure 2.2 The concept behind an AR system.

Camera Virtual Camera

Real World Virtual World

Align position

Augmented World

Merging

FFI-rapport 2012/00490 11

2.2 Military applications

In military aircraft and helicopters pilots have been using Head-Up Displays (HUD) and Helmet-
Mounted Sights (HMS) with AR for several years. These systems provide the pilot with
navigation and flight information, and for some systems ground or air targets can be marked with
graphics.

AR systems that display tactical battlefield information are now being developed for combat
vehicles and ground soldiers. Typically these systems will be used to increase situational
awareness through visualization of Blue Force Tracking (BFT) data and points of interest like
observations and targets. In the future, sensor platforms and rapid information sharing over
networks will probably make it possible to develop AR systems that can provide close to real-
time red force tracking on the battlefield.

Figure 2.3 Examples of military applications of AR: HUD in aircraft, IED Threat Locator [7],
ground soldier systems (Microvision and Contactum), combat vehicle system, and
exercises with real and virtual units.

 12 FFI-rapport 2012/00490

AR is also being used within military training, but so far mostly for experimentation purposes.
Here it has been used to visualize virtual enemies in the real world. It has also been used to
combine live and simulator based training, where real soldiers and vehicles can train together
with virtual forces operated from simulators in a two-way real-time interaction between live and
virtual units. Tools for Computer Generated Forces (CGF) can also be used to control the virtual
forces. In such applications one of the biggest challenges of both vehicle mounted and wearable
AR systems is the need for accurate spatial tracking. The position and orientation of all
participants must be accurately tracked over the whole training field. Even with good spatial
tracking the occlusion (hiding) of virtual objects that are positioned completely or partially behind
live objects is very hard to visualize correctly. Figure 2.3 shows images from some examples of
military applications of AR.

2.3 Simulated AR

In computer games it is common to insert additional graphical objects into the virtual scene, and
the player is often equipped with a simulated HUD with an AR system. This can be used for
visual directions to a location, information about objects and highlighting items in the virtual
world. Figure 2.4 shows examples of AR in computer games. The computer game Frontlines:
Fuel of War from Kaos Studios uses a simulated HUD with an AR system to display tactical
battlefield information, like blue force and red force tracking and waypoints. In the computer
game Heavy Rain from Quantic Dream, the player can use special glasses with an AR system that
aids in the crime scene investigation.

Our simulated AR system for VBS2 adds graphical objects to the virtual scene in VBS2. The
system is designed to look like real AR systems, and the graphical objects are drawn in a two-
dimensional graphical overlay and not directly into the three-dimensional virtual scene. We also
simulate the end-to-end system delay that is present in real AR systems and causes registration
errors when motion occurs.

Figure 2.4 Examples of AR in computer games: Frontlines: Fuel of War (Kaos Studios) and
Heavy Rain (Quantic Dream).

FFI-rapport 2012/00490 13

3 Virtual Battlespace 2
Virtual Battlespace 2 (VBS2) is a game-based1, fully interactive, three-dimensional, synthetic
environment for use in military training and experimentation. VBS2 is developed by Bohemia
Interactive Simulations (BISim), and is used by many military organizations worldwide. At FFI
we have been using VBS2 since 2008. Figure 3.1 shows some pictures from VBS2.

Figure 3.1 Pictures from VBS2 (Bohemia Interactive Simulations).

VBS2 VTK (Virtual Training Kit), which is the baseline VBS2 product, encompasses the
following components:

• VBS2 Desktop Trainer
• VBS2 Development Suite
• VBS2 HLA/DIS Gateway (LVC Game)

VBS2 Desktop Trainer is the main application which includes the game client, the scenario editor
and the module for After Action Review (AAR). In the game client the user controls an avatar
(virtual character) that can move around and operate as infantry, drive a vehicle or an aircraft, or
operate a weapon or a sensor platform. A large collection of vehicles and weapon platforms for
land, sea and air is included in VBS2. In addition about 10 terrain models are included in VBS2.

VBS2 Development Suite contains a set of tools that can be used to create new content for VBS2.
Examples of new content are vehicles, weapon platforms and avatars, or new terrain models.

1 VBS2 is based on the first person shooter game Armed Assault.

 14 FFI-rapport 2012/00490

VBS2 HLA/DIS Gateway makes it possible to connect VBS2 with other military simulations that
support HLA (High Level Architecture) or DIS (Distributed Interactive Simulation).

A typical setup for a VBS2 simulation consists of a dedicated VBS2 server, a number of VBS2
game clients and possibly any other simulators connected via HLA/DIS. This is shown
schematically in Figure 3.2. At FFI we mainly use VBS2 for experimentation purposes. Often we
implement new weapon systems and new technology for testing and demonstration in a synthetic
environment.

VBS2 is under continuous development, and new versions are usually released twice a year. We
have used VBS2 version 1.5 in our implementation and testing of the simulated AR system.
VBS2 version 1.5 was released in September 2011. A more comprehensive description of VBS2
can be found in [8].

Figure 3.2 Typical setup for a VBS2 simulation (Bohemia Interactive Simulations).

3.1 Scripting in VBS2

VBS2 has a built-in scripting language. A scripting language (or interpreted language) is a
programming language that is read and executed by another computer program called an
interpreter, rather than being compiled to machine code and executed directly on the processor.
An advantage with scripting languages compared to compiled languages is that it is usually faster
to make changes to a script, since the script only has to be reread by the interpreter. The major
disadvantage is that a script runs much slower than a program that has been compiled to machine
code. For instance is VBS2Fusion (version 2.0), which is a C++ based API for VBS2, over 100
times faster in execution than the VBS2 scripting language [8]. VBS2Fusion is described in detail
in Section 3.2.

FFI-rapport 2012/00490 15

The VBS2 scripting language has a syntax and control structure that is similar to C++ and Java. It
contains more than 1 500 scripting commands, and a function library which contains a number of
pre-made utility functions. Documentation for the VBS2 scripting language and the function
library can be found in the Bohemia Interactive Simulations Wiki [9]. The VBS2 scripting
language is intended for programing events in a scenario or additional functionality for vehicles
and weapon platforms.

3.2 VBS2Fusion

VBS2Fusion is a C++ based API for VBS2 developed by SimCentric Technologies. VBS2Fusion
is not included in VBS2 VTK, but is a VBS2 module that has to be purchased separately. Version
1 of VBS2Fusion provided a C++ interface towards VBS2, but the VBS2 scripting layer was still
used to communicate with the VBS2 core. It was first when VBS2Fusion version 2 was released
in October 2010 that VBS2 finally got a complete, object oriented, C++ based programming
interface with direct access to the VBS2 core. The new version of VBS2Fusion also contains
more functionality than what is available through the VBS2 scripting language, for example the
ability to draw graphical primitives and text into the VBS2 window. This functionality is used in
the implementation of our simulated AR system.

VBS2Fusion consists of a collection of data and utility classes. The data classes are used to store
and maintain data fetched from the VBS2 engine, whereas the utility classes are used to access
the VBS2 engine directly. The intention of this design concept is to minimize the need for directly
accessing the VBS2 engine, to avoid problems with lower performance of the VBS2 program.
The components of the VBS2Fusion framework are shown schematically in Figure 3.3. A
solution developed with VBS2Fusion is compiled as a plugin Dynamic Link Library (DLL) that
is used by the VBS2 engine. More information about VBS2Fusion can be found in the
VBS2Fusion Product Manual [10], which is available online.

Figure 3.3 The VBS2Fusion framework (Bohemia Interactive Simulations).

 16 FFI-rapport 2012/00490

4 Functionality in the AR system
Our simulated AR system is developed for use in combat vehicles like Infantry Fighting Vehicles
(IFV) and Main Battle Tanks (MBT). It gives the commander, gunner and driver information in
the form of graphical symbols in their sights and periscopes. The system works together with an
experimental Battlefield Management System (BMS) [11] developed at FFI, and visualizes
information like Blue Force Tracking (BFT) and observations received from the BMS.

4.1 Starting the system

Before the AR system can be activated it has to be connected to our experimental BMS. We have
added the item “Connect to BMS” to the action menu for the commander of our vehicles in
VBS2. This action creates a combo box, where the user can select which BMS client to connect
to. This is shown in Figure 4.1. When a vehicle is connected to a BMS client, it sends the
following data through an IP (Internet Protocol) connection:

• Vehicle position
• Vehicle direction
• Turret direction
• Laser Range Finder (LRF) direction

Updated data are sent every second. We have developed a VBS2Fusion plugin that sends data
from the VBS2 client to the BMS. The connections between the VBS2 clients and the BMS
clients are described further in Section 5.1.

After a vehicle has been connected to a BMS client, the AR system can be activated by selecting
“Activate AR” from the action menu. In a vehicle the commander, gunner and driver can activate
their own AR system independently. The AR system is deactivated by selecting “Deactivate AR”
from the action menu, and the commander can terminate the connection to the BMS by selecting
“Disconnect from BMS”. When the vehicle is connected to a BMS client, a message indicating
which BMS client the vehicle is connected to is shown in the lower left corner of the screen. The
message “AR activated” is shown at the same place when the AR system is active.

Figure 4.1 Connecting to a BMS client from the commander’s view in VBS2.

FFI-rapport 2012/00490 17

4.2 AR objects

All the AR objects in the AR system have the same structure, and consist of the following five
components:

1. A symbol that shows the affiliation and type of the AR object. We have used symbols
from the MIL-STD-2525C standard for military map marking symbols [12]. The AR
system receives data about the affiliation and type of an AR object from the BMS. Table
4.1 shows the selection of symbols based on affiliation and type that is available in the
AR system. The symbol is always drawn at a specified height in meters above the actual
position of the AR object. The default value of this height is 25 meters.

2. A unique text string that represents the ID of the AR object. The ID is drawn above the
symbol. The AR system receives this ID from the BMS.

3. A number that shows the distance in meters from the vehicle to the AR object. The
distance is drawn on the right side below the symbol.

4. A dot that represents the actual position of the AR object. This dot is drawn with white
color if the vehicle has Line of Sight (LOS) to the position of the AR object; otherwise it
is drawn with red color.

5. A line that connects the dot and the symbol. The line is drawn with the same color as the
symbol, according to the affiliation of the AR object.

Figure 4.2 shows an AR object with its five components. The alpha (transparency) value for the
symbol and the line between the dot and the symbol can be adjusted. The default value is 192 on
a scale where the value 0 is fully transparent and the value 255 is fully opaque.

Figure 4.2 The five components of an AR object.

Distance [m]

ID

1

2

3

5

4

 18 FFI-rapport 2012/00490

To avoid too much cluttering, the AR system has a minimum distance and a maximum distance
for when the AR objects are shown. The default values are 15 meters for the minimum distance,
and 6 000 meters for the maximum distance. The default maximum distance reflects the values
we are using for the maximum view distance and maximum object draw distance in VBS2.

 Unknown Friend Neutral Hostile

Air

Armor

Ground

IFV

Infantry

Vehicle

Table 4.1 The selection of MIL-STD-2525C symbols available in the AR system.

FFI-rapport 2012/00490 19

4.3 Blue Force Tracking

The BMS provides Blue Force Tracking (BFT) of all the vehicles that are connected to a BMS
client. The BFT data are sent to the AR system where they are visualized with AR objects. Figure
4.3 shows an example with BFT symbols drawn on the BMS screen (to the left), and the virtual
scene viewed through the vehicle’s sight with AR objects marking the blue forces (to the right).
The information is shown from the perspective of the vehicle with ID 1-1, which is looking at two
friendly vehicles with IDs 1-2 and 1-3. The first number in the BFT IDs represents the platoon,
while the second number represents the unit number within that platoon. On the BMS screen the
blue dots marks the position of the vehicles, the short blue lines marks the direction of the
vehicles, and the pairs of two long blue lines in a “V”-shape marks the viewing sector of the
gunners. In addition there is a short orange line on the vehicle with ID 1-1 that marks the
direction of the Laser Range Finder (LRF), which is also the viewing direction of the commander.
The BFT information in our system is usually updated once per second, which is probably the
best rate one can hope for in a real system today.

Figure 4.3 Blue Force Tracking on the BMS screen (to the left) and through the vehicle
commander’s sight with the AR system (to the right).

4.4 Observations

It is possible to mark positions of interest in the BMS by adding observations. Observations can
be given an affiliation and a type. The data for the observations are sent to the AR system where
they are visualized with AR objects in the same manner as the BFT data. The affiliation and type
of the observations can be changed, and the observations can be moved or deleted via the user
interface for the BMS. As we will describe in the next section, we have also integrated a Laser
Range Finder (LRF) with the BMS that can be used for interaction.

Figure 4.4 shows images from two situations where the BMS screen images with BFT and
observations are shown to the left, and the corresponding images from the sight with the AR

 20 FFI-rapport 2012/00490

system are shown to the right. The information is shown from the perspective of the vehicle with
ID 1-1. The observations in our experimental BMS have unique IDs consisting of two letters,
where the first letter correspond to the creator and the second letter represents the sequence
number for that creator. The ID BA thus means that this observation was created by BMS 2 (or
BMS B), and it is the first observation created from this BMS.

Figure 4.4 Two situations with observations on the BMS screen (to the left) and through the
vehicle commander’s sight with the AR system (to the right).

4.5 Laser Range Finder

We have also integrated a vehicle mounted Laser Range Finder (LRF) with the BMS. This LRF is
operated by the vehicle commander. When the LRF is triggered, the position where it is pointed is
sent to the BMS. In a real system this position must be found by using the measured distance and
the orientation of the LRF. The position is shown as an orange dot on the BMS screen for a few
seconds, and during that period the commander can accept this position as an observation by

FFI-rapport 2012/00490 21

selecting “Confirm” from the BMS GUI (Graphical User Interface). As default, the observation is
added as an unknown ground observation, which afterwards can be changed to the right affiliation
and type. Figure 4.5 shows a sequence of four images that illustrates the process of creating an
observation with the LRF. Here the car in the commander’s sight is marked as an unknown
ground observation.

Figure 4.5 A car is marked as an unknown ground observation with the integrated Laser Range
Finder (LRF).

4.6 Voice recognition

We have also been experimenting with speech recognition software connected to the BMS, in a
way that the commander can say “Confirm!” to have the position from the Laser Range Finder
(LRF) accepted as an observation. In addition the commander can specify the affiliation and type
through voice commands. For example if the commander points the LRF at an enemy vehicle and
says “Confirm enemy vehicle!” an observation with right affiliation and type should be created.

 22 FFI-rapport 2012/00490

Of course, there could be a lot of problems with integrating a voice recognition system in a noisy
environment like a combat vehicle, but it works quite well in simulated vehicles at the lab. The
voice recognition system is described in [13].

4.7 Scaling

It is possible to turn on and off whether the AR objects are scaled according to the distance from
the vehicle or not. The scaling affects the size of the symbols, the size of the dots, and the width
of the lines between the dots and the symbols. The system has a minimum and a maximum
scaling factor, to avoid that the symbols become too small or too big. The text parts of the AR
objects always have the same size, and the symbols are always at the specified height in meters
above the dots that mark the actual positions. Figure 4.6 shows two situations where scaling is
turned off in the images to the left, and turned on in the images to the right.

Figure 4.6 AR objects with scaling according to the distance from the vehicle turned off (to the
left) and turned on (to the right).

FFI-rapport 2012/00490 23

4.8 Occlusion by terrain

It is possible to specify whether the AR objects are to be occluded by the terrain or not. If
occlusion is activated and the position of an observation is occluded from the posisiton of the
vehicle, the dot is drawn in red color, and the part of the line between the dot and the symbol that
is occluded is drawn in white color. This is demonstrated in Figure 4.7, where the two vehicles
behind the hill have been marked as enemy ground vehicles. The two vehicles are not visible
from the vehicle with the AR system, and this is visualized by the AR objects.

This functionality will be problematic to achieve in a real AR system, and in VBS2 it has the
side-effect that AR objects are occluded by buildings and objects as well, since actual Line of
Sight (LOS) calculations are being used. Nevertheless, we wanted to be able to experiment with
this functionality.

Figure 4.7 AR objects that are positioned on the other side of a hill are visualized with red dots
and partially white lines.

4.9 Symbol clamping

The AR system has the possibility to specify whether the symbols and text objects are to be
clamped within the upper border of the screen or not. If this functionality is activated the symbols
and the text objects will always stay below the upper border of the screen, as long as the position
of the AR object itself does not disappear above the upper border of the screen. They will still
disappear to the left and right side and to the bottom of the screen though. The effect of this
clamping is shown in Figure 4.8, where the image to the left shows AR objects with symbol
clamping turned off, and the image to the right shows AR objects with clamped symbols.

 24 FFI-rapport 2012/00490

Figure 4.8 AR objects with symbol clamping turned off (to the left), and AR objects with symbol
clamping turned on (to the right).

4.10 Simulated system delay

In a real AR system the end-to-end system delay can be defined as the time difference between
the moment that the tracking system measures the position and orientation of the viewpoint to the
moment when the generated AR graphics corresponding to that position and orientation appear in
the displays. End-to-end system delays cause registration errors when motion occurs, and the
objects drawn by the AR system are left at their old screen positions during this delay.

We wanted to represent this effect in our simulated AR system to experiment with how long end-
to-end system delays that can be accepted by the users. This also makes the simulated AR system
appear more realistic in terms of available technology. This delay can be adjusted, and the default
value is 0.1 seconds. Figure 4.9 illustrates the visual effect of the end-to-end system delay when
the camera is moved to the left. Here the AR system has not yet been updated in the image to the
right, and the AR object remains on the same screen position as in the image to the left.

Decreasing the end-to-end system delay is often very expensive, so this is a cost-benefit problem.
In this kind of AR system the end-to-end system delay is probably not that critical, as long as it is
below a certain threshold.

FFI-rapport 2012/00490 25

Figure 4.9 The visual effect of the end-to-end system delay.

4.11 Configuration file

When the AR system is activated it reads a configuration file that can be used to define values for
a set of parameters for the AR system. The configuration file is called “arconfig.txt”, and can be
found in the folder “VBS2_HOME\pluginsfusion”, where VBS2_HOME is the directory where
VBS2 has been installed. Table 4.2 shows the parameters that can be set in the configuration file
and their default values. The default values are used for all the parameters if the configuration file
is missing, otherwise the default parameters are used for any parameters not defined in the
configuration file. The values of the parameters can easily be changed by deactivating the AR
system, editing the configuration file, and then activating the AR system again.

Parameter Default value Description
ARMinDist 15 [m] Minimum distance for AR objects to be drawn
ARMaxDist 6 000 [m] Maximum distance for AR objects to be drawn
bARScaling True If true, the AR objects are scaled (Ch. 4.7)
ARMinScaleFactor 0.1 Minimum scale factor for AR objects
ARMaxScaleFactor 1.0 Maximum scale factor for AR objects
ARDefaultScaleFactor 0.1 Scale factor used when scaling is disabled
ARLineHeight 25 [m] Height of the line between dot and symbol
ARLineWidth 10 Width of the line between dot and symbol
ARFontSize 20 Font size for the text
ARAlpha 192 Alpha value used for the AR objects
bARTerrainOcclusion True If true, the AR objects should be occluded (Ch. 4.8)
bARSymbolClamping True If true, the symbols and text are clamped (Ch. 4.9)
ARUpdateInterval 0.1 [s] Simulated end-to-end system delay (Ch. 4.10)

Table 4.2 The parameters that can be changed by the configuration file for the AR system.

 26 FFI-rapport 2012/00490

5 Implementation of the AR system
The simulated AR system is implemented in C++ using VBS2Fusion version 2.0. VBS2Fusion
version 2.0 has functions that can access the Direct3D interface and draw graphical primitives and
text into the VBS2 window. Direct3D is part of Microsoft’s DirectX API and is used to generate
hardware accelerated, three-dimensional computer graphics. The AR system is compiled as a
plugin Dynamic Link Library (DLL) that is used by the VBS2 engine.

5.1 System setup

We have implemented the ability for the commander, the gunner and the driver of a vehicle to use
the AR system. In our simulated combat vehicle it is the commander that operates the BMS, but
both the gunner and the driver have the ability to watch the BMS screen. The operators and
components in our simulated combat vehicle are shown in Figure 5.1.

For each vehicle, the VBS2 client used by the commander must be connected to a BMS client for
the AR system to work. We have developed a separate BMS communication plugin, also using
VBS2Fusion, which sends vehicle data from the VBS2 clients used by the commanders to the
BMS clients. The AR system plugins on the VBS2 clients used by the commanders, the gunners
and the drivers of the vehicles with AR functionality receives AR object data from the BMS
clients. Figure 5.2 shows the connections between the BMS clients and the VBS2 clients in a
system with two combat vehicles with AR systems. Here the BMS communication plugins are
marked with yellow color, and the AR system plugins are marked with blue color. The simulated
system is designed to resemble the architecture of a real combat vehicle system with BMS and
AR.

Figure 5.1 Operators and components in our simulated combat vehicle.

 Gunner

Driver

Commander

VBS2
client

VBS2
client

BMS
client

VBS2
client

BMS
(clone)

FFI-rapport 2012/00490 27

Figure 5.2 Connections between the BMS clients and the VBS2 clients in a system with two
combat vehicles with AR systems.

5.2 AR graphics engine

The simulated AR system includes a simple graphics engine that is responsible for drawing the
graphical overlay with the AR objects on top of the VBS2 scene. VBS2Fusion has a callback
function, OnSimulationStep, which is called by the VBS2 engine in every update loop of VBS2.
We use this function to generate the graphics for the AR system in every frame generated by

Vehicle 1

BMS com

AR system

VBS2 client
(Commander)

AR system

VBS2 client
(Gunner)

AR system VBS2 client
(Driver)

AR object data

Vehicle data

Vehicle 2

BMS com

AR system

VBS2 client
(Commander)

AR system VBS2 client
(Gunner)

AR system VBS2 client
(Driver)

AR object data

Vehicle data

BMS client 2

BMS data

BMS client 1

VBS2 server

 28 FFI-rapport 2012/00490

VBS2. The main structure of the algorithm that generates the graphics for the AR system is
outlined in pseudocode in Algorithm 5.1. To simulate the end-to-end system delay the screen
coordinates for the AR objects are stored, and only updated at the selected interval
(ARUpdateInterval).

The drawing function of the AR graphics engine is outlined in Algorithm 5.2. In this algorithm
the AR object scale factor that is used to calculate the size of each AR object when scaling is
enabled is calculated according to the formula:

AR line height [pixels]AR object scale factor
Screen height [pixels]

= (5.1)

The AR object scale factor is clamped between the selected values for minimum and maximum
scale factor (ARMinScaleFactor and ARMaxScaleFactor respectively).

Algorithm 5.1 The main structure of the AR graphics engine.

OnSimulationStep() {

 if (ARSystem is activated) {

 if (TimeSinceLastARUpdate > ARUpdateInterval) {

 // Update AR system before drawing.

 ReceiveARObjectDataFromBMS();

 if ((!ARObjectList.Empty) &&

 (Player is in Vehicle) &&

 (Player is turned in)) {

 Sort ARObjectList according to distance;

 Update screen coordinates for the ARObjects;

 DrawARDisplay();

 };

 }

 else {

 // Draw without updating AR system.

 if ((!ARObjectList.Empty) &&

 (Player is in Vehicle) &&

 (Player is turned in)) {

 DrawARDisplay();

 };

 };

 };

};

FFI-rapport 2012/00490 29

The drawing functions in the VBS2Fusion API are used for drawing the line and the dot parts of
the AR object. For drawing the texture and the text parts, the Direct3D API is used directly due to
optimization. At the time of implementation, calling the Direct3D API directly when drawing
textures and text was much faster than using the similar functions in the VBS2Fusion API. This
issue is further discussed in Section 5.6.

Algorithm 5.2 The main structure of the drawing function from the AR graphics engine.

5.3 BMS communication

Each AR system plugin continuously receives messages from a BMS client. A message from the
BMS client is either a Blue Force Tracking (BFT) message or an observation message. BFT
messages are sent all the time over UDP (User Datagram Protocol), while the observation
messages are sent over TCP (Transmission Control Protocol) when an observation is created,
updated or removed. When an AR system plugin connects to a BMS client, it sends a request to
receive messages for all current observations, so that it becomes synchronized with the BMS
client. The function that receives messages with AR object data from the BMS client is outlined
in Algorithm 5.3.

DrawARDisplay() {

 // Draw all visible AR objects from back to front.

 for (All objects in ARObjectList) {

 if (ARObject is inside the screen) {

 if ((Distance > ARMinDist) && (Distance < ARMaxDist)) {

 if (bARScaling) {

 Calculate scale factor; (5.1)

 };

 if (bARSymbolClamping) {

 Clamp AR symbol to screen height;

 };

 Draw AR line;

 Draw AR dot;

 Draw AR symbol texture;

 Draw AR ID text;

 Draw AR distance text;

 };

 };

 };

};

 30 FFI-rapport 2012/00490

Algorithm 5.3 The function that receives AR object data from the BMS.

5.4 Terrain occlusion effect

The terrain occlusion effect applied on the line between the AR symbol and the dot is created by
testing Line of Sight (LOS) from the vehicle to points along the line. We use a bisection method
starting with the end points, to find the lowest visible point on the line within a certain tolerance.
This method is outlined in Algorithm 5.4 and illustrated in Figure 5.3. The LOS calculations are
done by VBS2Fusion.

ReceiveARObjectDataFromBMS() {

 while (Received new AR object message from BMS) {

 if (Message == Blue Force Tracking message) {

 if (ARObject.ID != Own Vehicle ID) {

 // Ignore AR object for own vehicle.

 if (ARObject with this ID exists in ARObjectList) {

 Update existing AR object;

 }

 else {

 Create new ARObject;

 Insert ARObject in ARObjectList;

 };

 };

 }

 else if (Message == Observation message) {

 if (Message status == NEW) {

 Create new ARObject;

 Insert ARObject in ARObjectList;

 }

 else if (Message status == UPDATE) {

 Update existing AR object;

 }

 else if (Message status == REMOVE) {

 Remove ARObject from ARObjectList;

 Destroy ARObject;

 };

 };

 };

};

FFI-rapport 2012/00490 31

Algorithm 5.4 The function that checks LOS to the AR object, and finds the lowest visible point
on an AR line.

CheckLOStoARObject() {

 if (!(LOS to lowerPoint on AR line)) {
 // The lower end point on the AR line is not visible.

 lowestVisiblePoint = 0;

 if (LOS to upperPoint on AR line) {
 // The upper end point on the AR line is visible.
 // Find the lowest visible point on the AR line.

 lineHeight = ARLineHeight;

 while (lineHeight > ARTerrainOcclusionTolerance)) {

 if (LOS to middlePoint on line) {

 upperPoint = middlePoint;

 }

 else {

 lowerPoint = middlePoint;

 };

 // Update middle point.

 middlePoint = 0.5 * (upperPoint + lowerPoint);

 // Update line height.

 lineHeight = 0.5 * lineHeight;

 };
 // Tolerance reached. Use last middle point as the lowest
 // visible point on the AR line.

 lowestVisiblePoint = middlePoint;

 };

 };

};

 32 FFI-rapport 2012/00490

Figure 5.3 Bisection method for the terrain occlusion effect. The red point is the lowest visible
point on the AR line found by the method.

5.5 Drawing text with high visibility

The text parts of the AR objects need to be visible on both light and dark background. A simple
method for drawing text with high visibility is to draw each character with both black and white
color. The black characters are drawn first, and then the white characters are drawn in front of the
black characters with a little offset in the left and upward direction. This creates a shadow effect
that makes the text readable in front of all background colors. The offset between the black and
white characters should be about 5 to 10 percent of the character height. The method is illustrated
in Figure 5.4.

Figure 5.4 Text that is visible on both light and dark background.

FFI-rapport 2012/00490 33

5.6 Performance of the system

During the implementation and testing of the AR system we observed performance problems
leading to low frame rates when drawing more than about ten AR objects. We found out that this
was caused by the functions in the VBS2Fusion API that draw text. This problem disappeared
when we used the Direct3D API directly for drawing the text.

To optimize the AR system further we have also used the Direct3D API directly for drawing
textures. This has made it possible to cache the textures in memory.

The performance of the final implementation of the AR system is very good, even when the
terrain occlusion effect with all the Line of Sight (LOS) calculations is enabled. It can handle
more than 50 AR objects visible at the same time without any visible negative effects on the
frame rate. Of course, having 50 AR objects visible at the same time will clutter the view, so this
is not very practical.

6 Summary
This report has described the functionality in a simulated Augmented Reality (AR) system for
VBS2, and how this system has been implemented. The AR system is designed for use in combat
vehicles like Infantry Fighting Vehicles (IFV) and Main Battle Tanks (MBT), and gives the
commander, gunner and driver information in the form of graphical symbols in their sights and
periscopes. It works together with an experimental Battlefield Management System (BMS), and
visualizes information like Blue Force Tracking (BFT) and observations received from the BMS.
A vehicle mounted Laser Range Finder (LRF) has been integrated with the BMS to be able to
select positions from the terrain.

We have used the C++ based application programming interface (API) for VBS2, VBS2Fusion,
to implement the AR system. VBS2Fusion has functionality that makes it possible to draw
graphical primitives and text into the VBS2 window. The simulated AR system has a simple
graphics engine that is responsible for drawing the graphical overlay with the AR objects on top
of the VBS2 scene.

The AR system was used in a large simulator experiment in FFIs Battle Lab in November 2011,
where six professional Infantry Fighting Vehicle (IFV) crews from the Telemark Battalion
participated for one week. During this week the vehicle crews played through a number of
relevant scenarios for combat vehicles in VBS2, to evaluate the usefulness of AR functionality in
combination with the BMS. The results from this experiment will be used as input to the ongoing
process of designing a real AR system for combat vehicles.

 34 FFI-rapport 2012/00490

References
[1] M. Halsør, “Simuleringsøvelse med VBS2 - Test av BMS og AR”, FFI-rapport

2012/00612, 2012.

[2] M. Halsør, “Praktisk gjennomføring av simulator-eksperiment på FFIs battle-lab”, FFI-
notat 2012/00613, 2012.

[3] M. Halsør, S. Martinussen, P. I. Evensen and B. Hugsted, “Uttesting av BMS i syntetisk
miljø”, FFI-rapport 2007/00139, 2007.

[4] M. Halsør and S. Martinussen, “Simulatorøvelse for evaluering av BMS, MUAS og AR”,
FFI-rapport 2009/01379, Restricted, 2009.

[5] R. T. Azuma, A Survey of Augmented Reality, Presence: Teleoperators and Virtual
Environments, Vol. 6, 1997.

[6] R. Azume, Y. Baillot, R. Behringer, S. Feiner, S. Julier, B. MacIntyre, Recent Advances in
Augmented Reality, IEEE Computer Graphics and Applications, Vol. 21, No. 6, 2001.

[7] D. Donovan and J. Cimino, Augmented Reality as an Emerging Military Training
Technology, I/ITSEC 2010 Paper No. 10305, 2010.

[8] Bohemia Interactive Australia Pty Ltd, “White Paper: VBS2”, Release Version 2.0, 2012,
http://armory.bisimulations.com/sites/default/files/file_uploads/VBS2_Whitepaper.pdf.

[9] BISim Wiki, http://resources.bisimulations.com/wiki.

[10] VBS2Fusion Product Manual, http://www.simct.com/online/vbs2fusion_manual.

[11] M. Halsør and B. Hugsted, “Teknisk beskrivelse av eksperiment-BMS”, FFI-rapport
2009/01402, 2009.

[12] United States Department of Defense, “MIL-STD-2525C, Department of Defense Interface
Standard: Common Warfighting Symbology”, 2008.

[13] O. M. Strand, D. Olson, B. Hugsted and M. Halsør, “Design av et talegjenkjenningssystem
for håndfri input til et BMS med AR-informasjon i siktebildet”, FFI-rapport 2012/00611,
2012.

http://www/program/rapporter/?sok=1&datafelt=rapportnummer&uttrykk=2007/00139&format=1
http://www/program/rapporter/?sok=1&datafelt=rapportnummer&uttrykk=2007/00139&format=1
http://www/program/rapporter/?sok=1&datafelt=rapportnummer&uttrykk=2007/00139&format=1
http://www/program/rapporter/?sok=1&datafelt=rapportnummer&uttrykk=2009/01379&format=1
http://www.bisimulations.com/whitepaper
http://resources.bisimulations.com/wiki

FFI-rapport 2012/00490 35

Abbreviations
AAR After Action Review
API Application Programming Interface
AR Augmented Reality
ASI Application Scripting Interface
BFT Blue Force Tracking
BISim Bohemia Interactive Simulations
BMS Battlefield Management System
CGF Computer Generated Forces
DIS Distributed Interactive Simulation
DLL Dynamic Link Library
FOV Field of View
GUI Graphical User Interface
HDM Head-Mounted Display
HLA High-Level Architecture
HMS Helmet-Mounted Sights
HUD Head-Up Displays
IFV Infantry Fighting Vehicle
IMU Inertial Measurement Unit
IP Internet Protocol
LOS Line of Sight
LRF Laser Range Finder
LVC Live Virtual Constructive
MBT Main Battle Tank
TCP Transmission Control Protocol
TMBN Telemark Battalion
UDP User Datagram Protocol
VBS2 Virtual Battlespace 2

	English summary
	Sammendrag
	Contents
	1 Introduction
	2 Augmented Reality
	2.1 Technology
	2.2 Military applications
	2.3 Simulated AR

	3 Virtual Battlespace 2
	3.1 Scripting in VBS2
	3.2 VBS2Fusion

	4 Functionality in the AR system
	4.1 Starting the system
	4.2 AR objects
	4.3 Blue Force Tracking
	4.4 Observations
	4.5 Laser Range Finder
	4.6 Voice recognition
	4.7 Scaling
	4.8 Occlusion by terrain
	4.9 Symbol clamping
	4.10 Simulated system delay
	4.11 Configuration file

	5 Implementation of the AR system
	5.1 System setup
	5.2 AR graphics engine
	5.3 BMS communication
	5.4 Terrain occlusion effect
	5.5 Drawing text with high visibility
	5.6 Performance of the system

	6 Summary
	References
	Abbreviations

