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English summary 

When developing pulse handling algorithms, a developer may face various problems with respect 

to the use of real data to test his or her algorithms. Some of these problems can be solved by using 

simulated data instead (or in addition). 

 

We have developed a first version of a Pulse Descriptor Word (PDW) simulator with a user-

friendly interface in Matlab. The simulator produces PDWs with information about time of arrival 

(TOA), amplitude, frequency, pulse width, and angle of arrival (AOA), based on information 

about scene geometry and radar and sensor properties. 

 

Applying the PDW simulator to a test scenario has shown that the simulator produces quite 

realistic output. The PDW simulator was also used to test a deinterleaving algorithm – the LINE 

Deinterleaver. The benefits of controlling the input scenario, as well as knowing the absolute 

truth about which pulse belongs to which radar, was clearly seen for this type of application. We 

conclude that the PDW simulator could be a valuable additional tool when developing and testing 

pulse handling algorithms. 

 

The current version of the PDW simulator software simulates rotating radars in 2 dimensions on a 

flat Earth. Future versions of the software could be expanded to operate in 3 dimensions and to 

use an elliptical Earth. Obstacles could be added to the scenario, and integration of the software 

with 3D maps could open up for the possibility to create realistic geographic scenarios. Non-

rotating radars and additional parameters and measurements such as crystal frequency and 

Doppler could also be included. The user interface could be upgraded to further facilitate the use 

of the PDW simulator. 
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Sammendrag 

I arbeidet med å utvikle algoritmer som skal håndtere pulser, vil en programutvikler møte ulike 

problemstillinger med hensyn på det å bruke reelle data til å teste algoritmene sine. Noen av disse 

problemene kan løses ved å bruke simulerte data i stedet (eventuelt i tillegg). 

 

Vi har utviklet en første versjon av en Pulse Descriptor Word (PDW)-simulator med et 

brukervennlig brukergrensesnitt i Matlab. Simulatoren genererer PDWer som inneholder 

informasjon om ankomsttid (TOA), amplitude, frekvens, pulsbredde og ankomstvinkel, basert på 

informasjon om radarenes og sensorenes egenskaper samt geometrien i scenen. 

 

Bruk av PDW-simulatoren på et test-scenario har vist at simulatoren kan generere nokså 

realistiske PDWer. Simulatoren har også blitt brukt til å teste en pulssorteringsalgoritme – LINE 

pulssorterer. For denne typen applikasjon var det åpenbare fordeler med å ha kontroll på 

inputscenarioet, samt å kjenne ”fasiten” på hvilken puls som hører til hvilken radar. Vi 

konkluderer med at PDW-simulatoren vil kunne være et verdifullt tilleggsverktøy ved utvikling 

og testing av algoritmer som håndterer pulser. 

 

Dagens versjon av PDW-simulator programvaren simulerer roterende radarer i 2 dimensjoner på 

flat jord. I fremtidige versjoner av programvaren kunne man tenke seg muligheten av å utvide 

simulatoren til å operere i 3 dimensjoner samt benytte elliptisk jord i beregningene. Hindringer 

(objekter som helt eller delvis blokkerer utsendte radarpulser) kunne inkluderes i scenarioet, og 

ved å integrere programvaren med 3D-kart ville man få muligheten til å skape realistiske 

geografiske scenarioer. Man kunne også inkludere ikke-roterende radarer samt nye parametere og 

målinger slik som krystallfrekvens og Doppler i programvaren. Brukergrensesnittet kunne 

oppgraderes ytterligere slik at PDW-simulatoren blir enda mer brukervennlig.  
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1 Introduction 

When developing pulse handling algorithms, a developer faces several difficulties with respect to 

the testing of his or her algorithms: 

 

1) It may be difficult to get access to real data to use for the testing. 

2) Real data are often “messy”, i.e., it may be difficult to obtain “clean” data for testing of 

specific parts of the algorithm. 

3) It may be difficult to get hold of the “right type” of data for specific testing purposes. 

4) It may be difficult to get data from dense enough pulse environments to test the 

algorithm’s performance in challenging conditions. 

5) Real data are often classified and may therefore be less convenient to work with, or even 

be inaccessible. 

6) For real data the “truth” is not known and it may be difficult to evaluate exactly how well 

the algorithm is performing. 

 

A Pulse Descriptor Word (PDW) simulator could potentially solve many of the problems 

described above. The user would be in full control of the scenario to investigate, and the 

simulator could produce both very “clean” data as well as simulate extremely dense pulse 

environments. It would be possible to examine and evaluate the performance of the algorithm in 

question precisely, since it would be known which pulses belong to which radar. Of course, in the 

end pulse handling algorithms must always be tested on real data, since a simulator will not be 

able to fully recreate all aspects of a real scenario. However, a PDW simulator could be a 

valuable additional tool when developing and testing new pulse handling algorithms. 

 

We have developed a first version of such a PDW simulator, and its capabilities and use will be 

described in the following chapters. Chapter 2 gives detailed information about what the 

simulator can do, Chapter 3 describes how to use the software, and Chapter 4 demonstrates how 

to apply the PDW simulator to a test scenario and discusses the resulting output. In Chapter 5 an 

example of an application is given, where the PDW simulator is used to test the LINE 

Deinterleaver. A summary is given in Chapter 6, while the algorithm for the PDW simulator 

software is given in Appendix A. 
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2 What can the simulator do? 

The PDW simulator generates simulated PDWs for a given input scenario that contains one or 

more rotating radars and one or more sensors that receive the emitted radar pulses. The sensors 

“measure” the time of arrival (TOA), amplitude, frequency, angle of arrival (AOA), and pulse 

width (PW) of the received pulses. Figure 2.1 shows a simplified block diagram for the PDW 

simulator. 

 

PDW
Simulator

Scenario
PDW
(TOA, amplitude, frequency, AOA, PW)

+ “truth”
(radar no, pulse no)

 

Figure 2.1 Simplified block diagram for the PDW simulator indicating the input and the output 

from the simulator. 

 

The PDW simulator keeps track of which radar a given pulse on a given sensor comes from. This 

information is for instance useful if the simulator is used to evaluate the performance of 

algorithms/programs for deinterleaving. In this case it is easy to identify if the simulated pulses 

(PDWs) have been sorted correctly or not by the deinterleaver. We will see an example of this in 

Chapter 5, where the LINE deinterleaver is applied to pulses generated by the PDW simulator. 

 

In addition, the simulator numbers all pulses from a given radar so that it is possible to identify if 

a pulse received by two or more sensors is the same pulse. This information is useful for instance 

if the PDW simulator is used to evaluate programs or methods that associate measurements from 

two or more sensors. 

 

The input scenario must contain information about the geometry (radar and sensor positions and 

movements), radar properties (such as rotation period, lobe pattern, PRI, frequency, and pulse 

width), and sensor properties (ability to detect pulses and to perform precise measurements of 

various pulse parameters). This will be described in more detail below. 

2.1 Scenario geometry 

The scenario geometry is defined by the sensor and radar positions and movements. The current 

version of the PDW simulator operates in 2 dimensions (the horizontal plane) and assumes that 

the Earth is flat, i.e., uses Cartesian coordinates. Figure 2.2 shows an example of a scenario 

geometry. 
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Figure 2.2 Example of scenario geometry. This scenario contains three sensors and two radars. 

Two of the sensors (s2 and s3) are stationary, while the third sensor (s1) moves 

along a straight line. One of the radars (r2) also moves along a straight line, while 

the second radar (r1) moves along a circle arc. 

 

The PDW simulator offers four different types of movement for the sensors and radars: 

 

1) Stationary 

2) Movement along a straight line with constant speed 

3) Movement along a circle arc with constant speed 

4) Arbitrary movement 

 

Movement types 2) - 4) will be described in more detail below.  

2.1.1 Movement along a straight line with constant speed 

Figure 2.3 shows an example of movement along a straight line with constant speed. The 

radar/sensor position (x, y) at time t is given by 

 

0 0

0 0

( )

( )

x

y

x v t t x

y v t t y

   

   
 (2.1) 

 

where (x0, y0) is the start position, t0 is the start time and vx and vy are the speeds along the x- and 

y-axis respectively, as given by 
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cos

sin

x

y

v v

v v





 

 
 (2.2) 

 

where v is the (constant) radar/sensor speed along the trajectory and α is the angle of the 

trajectory relative the x-axis. 

 

v

α

x

y

(x0,y0)

 

Figure 2.3 Movement along a straight line with constant speed. 

2.1.2 Movement along a circle arc with constant speed 

Figure 2.4 shows an example of movement along a circle arc with constant speed. The 

radar/sensor position (x, y) at time t is given by: 

 

 

 
0

0

cos ( )

sin ( )

x r t x

y r t y





  

  
 (2.3) 

 

where r is the radius of the circle, (x0, y0) is the position of the center of the circle, and α(t) is the 

angle relative the x-axis given by 

 

 0 0( )
v

t t t
r

     (2.4) 

  

where v is the (constant) speed of the radar/sensor along the trajectory, t0 is the start time, and α0 

is the start angle relative the x-axis for the trajectory. 
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v

α0

x

y

(x0,y0)

r

α

 

Figure 2.4 Movement along a circle arc with constant speed. 

2.1.3 Arbitrary movement 

Arbitrary movement is defined by pairs of corresponding time t and position (x, y) that are listed 

in an input file. Intermediate positions are found by linear interpolation. Any type of movement 

for the sensors and radars can be described by this input file.  

2.2 Radar properties 

Several properties of the radar are included in the PDW simulator: 

 

1) Rotation period 

2) Radar antenna lobe pattern 

3) PRI 

4) Frequency 

5) Pulse width 

 

Each of these is described in more detail below. 

2.2.1 Rotation period 

The radar rotation period determines the angle α between the radar main lobe pointing direction 

and the x-axis at a given time, see Figure 2.5. 

 

The PDW simulator provides two choices for the radar rotation period: 

 

1) Constant 

2) Varying 
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Each option will be described in more detail below. 

 

x

y

α

 

Figure 2.5 Angle between the radar main lobe pointing direction and the x-axis. 

2.2.1.1 Constant rotation period 

For a constant rotation period Trot the angle α between the radar main lobe pointing direction and 

the x-axis at time t is given by 

 

0 0

2
( ) ( )

rot

t t t
T


      (2.5) 

 

where α0 is the angle between the radar main lobe pointing direction and the x-axis at time t0. 

2.2.1.2 Varying rotation period 

The variation in the rotation period is set to correspond to a sinusoidal variation in the angular 

speed. This angular speed ω at time t can be expressed as 

 

  0 0 0( ) 1 sint A s t         (2.6) 

 

where A is the amplitude of the variation relative to the constant component of the angular speed,     

s is the angular frequency of the variation relative to the constant component of the angular speed, 

φ0 is the start phase of the variation, and ω0 is the constant component of the angular speed given 

by 

 

0

2

rotT


   (2.7) 

 

where Trot is the constant component of the rotation period. The corresponding varying rotation 

period T(t) can be written 
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 2
0

2 1
( )

( ) 1 sin
rot

rot

T

T t T
t A s t



 

 
   
   
 

 (2.8) 

 

The angle α between the radar main lobe pointing direction and the x-axis at time t is then given 

by 

 

 
0

1

0 0 0 0( ) ( ) cos

t

t

t t dt t A s s t B               (2.9) 

 

where t0 is the start time, α0 is the angle between the radar main lobe pointing direction and the x-

axis at time t0, and B is a constant given by 

 

 1

0 0 0 0 0 0cosB A s s t t          (2.10) 

2.2.2 Radar antenna lobe pattern 

The PDW simulator provides two choices for the radar antenna lobe pattern: 

 

1) Sinc-function shaped 

2) Arbitrarily shaped 

 

Each option will be described in more detail below. 

2.2.2.1 Sinc-function shaped radar antenna lobe pattern 

The PDW simulator uses a modified sinc-function as standard radar antenna lobe pattern. The 

amplitude Pθ [dB] at given angle θ is given by 

 

sin( )
20 lg ML

x
P P

x






 
   

 
 (2.11) 

 

in the range θ = [-π/2 π/2] where PML is the amplitude of the main lobe, and by 

 

sin( ) 2
20 lg

2
ML BL

x
P P P

x


 


 

   
         

   
 (2.12) 

 

when θ > π/2, and by 

 

sin( ) 2
20 lg

2
ML BL

x
P P P

x


 


 

   
         

   
 (2.13) 
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when θ < -π/2. Here PBL is the back lobe amplitude and the parameter x is calculated from 

 

0.443 sin( )

sin( / 2)ML

x





  (2.14) 

 

where θML is the main lobe opening angle. 

 

Figure 2.6 shows an example of a radar antenna lobe pattern where the main lobe opening angle 

is 10º, the main lobe amplitude is 0 dB, and the back lobe amplitude is -20 dB. 

 

 

Figure 2.6 Sinc-function shaped lobe pattern with main lobe opening angle equal to 10º, main 

lobe amplitude equal to 0 dB, and back lobe amplitude equal to -20 dB.  

2.2.2.2 Arbitrarily shaped radar antenna lobe pattern 

The arbitrarily shaped lobe pattern is defined by pairs of corresponding angle θ and lobe pattern 

amplitude Pθ, that are listed in an input file. Intermediate values are found by linear interpolation. 

Any type of radar antenna lobe pattern can be described by this input file. 

2.2.3 PRI 

The PDW simulator provides the possibility to choose between four different PRI types: 

 

1) Fixed 

2) Stagger 

3) Switched 

4) Jitter 

 

Each option will be described in more detail below. 
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2.2.3.1 Fixed PRI 

The PRI is constant, see Figure 2.7 for an example. 

 

 

Figure 2.7 Example of fixed PRI, where the PRI is 1 ms. 

2.2.3.2 Stagger PRI 

The PRI varies according to a specified pattern. Figure 2.8 shows stagger PRI with repeated 

blocks of the PRI values [0.8  0.9  1.0  1.1  1.2] ms. 

 

 

Figure 2.8 Example of stagger PRI, where the PRI pattern is constructed from repeated blocks 

of the PRI values [0.8  0.9  1.0  1.1  1.2] ms. 

2.2.3.3 Switched PRI 

The PRI varies according to a specified pattern, where each PRI value may be repeated several 

times. Figure 2.9 shows switched PRI with repeated blocks of the pattern [6x0.8 4x1.0 6x1.2] ms. 
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Figure 2.9 Example of swithced PRI, where the PRI pattern is constructed from repeated blocks 

of the PRI values [6x0.8 4x1.0 6x1.2] ms. 

2.2.3.4 Jitter PRI 

Jitter PRI has a Gaussian variation around its PRI mean value. Figure 2.10 shows jitter PRI with 

mean value 1 ms and standard deviation 0.01 ms (1%). 

 

 

Figure 2.10 Example of jitter PRI with mean value 1 ms and standard devation 0.01 ms (1%). 

2.2.4 Frequency 

The PDW simulator provides the possibility to choose between four different types of frequency: 

 

1) Fixed 

2) Stagger 

3) Switched 

4) Jitter 

 

This is similar to what was described above for the PRI, see Section 2.2.3.1-2.2.3.4. 
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2.2.5 Pulse width 

The PDW simulator provides the possibility to choose between four different types of pulse 

width: 

 

1) Fixed 

2) Stagger 

3) Switched 

4) Jitter 

 

This is similar to what was described above for the PRI, see Section 2.2.3.1-2.2.3.4. 

2.3 Sensor properties 

The sensor is characterized by its ability to detect pulses and to perform precise measurements of 

various pulse parameters such as amplitude, TOA, frequency, pulse width, and AOA. 

2.3.1 Detection probability and saturation level 

The probability that a sensor detects a given pulse is assumed to be determined only by the pulse 

amplitude. The PDW simulator allows setting several different amplitude levels with 

corresponding detection probabilities. See Section 3.1.5.3 for details. 

 

The PDW simulator can also simulate that pulses are saturated. The saturation level for the pulse 

amplitude must then be given. 

2.3.2 Amplitude measurements 

The amplitude P (measured in dB) of a pulse received by the sensor is calculated from 

  

0 r syst arbP P P P P P      (2.15) 

 

where P0 is the amplitude of an emitted pulse from an equivalent omnidirectional radar antenna 

(as measured in the close vicinity of that antenna), Pθ is the amplitude correction due to the radar 

antenna lobe pattern as given by Equations (2.11)-(2.14), ∆Psyst and ∆Parb are the systematic and 

arbitrary errors in the amplitude measurements, and Pr is the amplitude correction due to the 

distance r between the radar and the sensor as given by 

 

20lg( )rP r   (2.16) 

 

The arbitrary amplitude error ∆Parb is modeled as being Gaussian, while the systematic amplitude 

error ∆Psyst is modeled as one of the following: 

 

1) Constant 

2) Linearly changing 

3) Varying as a sinus 
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For option 2 (linearly changing) the following equation is used to calculate the systematic error: 

 

0 0( )systP k t t P      (2.17) 

 

where k is the rate of change of the error and ∆P0 is the systematic error at start time t0. 

 

For option 3 (sinus variations) the following equation is used to calculate the systematic error: 

 

0sin(2 )systP A f t       

 

where A is the error amplitude, f is the frequency of the variation, and φ0 is the 

phase of the error variation at t=0. 

(2.18) 

2.3.3 TOA measurements 

The time of arrival (TOA) of a pulse at the sensor is calculated from 

  

0 r syst arbTOA TOA T TOA TOA     (2.19) 

 

where TOA0 is the time when the pulse was emitted from the radar and ∆Tr is the time it takes for 

the pulse to travel the distance r between the radar and the sensor 

 

r

r
T

c
   (2.20) 

 

where c is the speed of light. 

 

The systematic and arbitrary errors ∆TOAsyst and ∆TOAarb are modeled in the same way as for the 

amplitude measurements, see Section 2.3.2. 

2.3.4 Frequency measurements 

The measured pulse frequency f  is calculated from 

  

0 syst arbf f f f    (2.21) 

 

where f0 is the true pulse frequency and the systematic and arbitrary frequency errors ∆fsyst and 

∆farb are modeled in the same way as for the amplitude measurements, see Section 2.3.2. 

2.3.5 Pulse width measurements 

The measured pulse width (PW) is calculated from 

  

0 syst arbPW PW PW PW    (2.22) 
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where PW0 is the true pulse width and the systematic and arbitrary pulse width errors ∆PWsyst and 

∆PWarb are modeled in the same way as for the amplitude measurements, see Section 2.3.2. 

2.3.6 AOA measurements 

The measured angle of arrival (AOA) is calculated from 

  

0 syst arbAOA AOA AOA AOA    (2.23) 

 

where AOA0 is the true angle of arrival and the systematic and arbitrary errors ∆AOAsyst and 

∆AOAarb are modeled in the same way as for the amplitude measurements, see Section 2.3.2. 

 

For the AOA systematic error ∆AOAsyst there is an additional option, that simulates that the error 

has a sinusoidal dependency on the direction that the sensor receives the pulse from. The error is 

then calculated from 

 

sin ( )syst refAOA A f AOA AOA        (2.24) 

 

where A is the error amplitude, f is the “frequency” of the error variation (number of sinus periods 

per 360º), and AOA ref  is the reference angle where ∆AOAsyst=0.  

2.4 Possible future expansions to the PDW simulator software 

The current version of the PDW simulator software simulates rotating radars in 2 dimensions on a 

flat Earth. Later versions of the software could be expanded to operate in 3 dimensions and to use 

an elliptic Earth (i.e., spherical coordinates) instead of the flat Earth approach. This would allow 

for airborne and /or spaceborne emitters and sensors to be included in the simulations. Obstacles 

could be added to the scenario, and integration of the software with 3D maps would open for the 

possibility to create realistic geographic scenarios. Non-rotating radars should be allowed for and 

additional parameters such as radar crystal frequency could be included. Additional 

measurements such as Doppler could also be performed. Further work should be done on 

improving the user interface of the simulator. This includes, amongst others, improved error 

handling and possibility to edit the radars and sensors that have been added to the scenario. 

 



 

  

  

 

 20 FFI-rapport 2013/00048 

 

3 How to use the simulator? 

The PDW simulator software was developed in Matlab 2012a, and use of the program requires 

Matlab to be installed on the computer. Start the simulator by typing “PDW_Simulator” in the 

Matlab command window. The following program window appears (Figure 3.1): 

 

 

Figure 3.1 PDW simulator program window. 

 

The simulator consists of three separate parts: 

 

1) Create scenario 

2) Run simulations 

3) Plot results 

 

First, a scenario must be created that will be used as input to the simulations. How to create the 

scenario will be described in Section 3.1.  



 

  
  

 

FFI-rapport 2013/00048 21   

 

After the scenario has been created, the PDW’s are calculated by pressing the “Run Simulations” 

button (see Section 3.2 for details).   

 

Finally, the results can be plotted by choosing from the options in the plot panel (Section 3.3). 

3.1 Create scenario 

It is possible to create an entirely new scenario or to use (and/or modify) an already existing 

scenario.  

 

Create a new scenario by using the “Add Radar” and “Add Sensor” buttons to insert radars and 

sensors into the scenario. Finish by pressing the “Save Scenario” button to save the scenario. 

 

Use an existing scenario by pressing the “Load Scenario” button to load the scenario into the 

simulator. The scenario can then be modified by using the “Remove Radar”, “Remove Sensor”, 

“Add Radar”, and “Add Sensor” buttons. Finish by pressing the “Save Scenario” button to save 

the scenario. 

 

The different buttons are described in more detail in subsections 3.1.1-3.1.6 below. 

3.1.1 Load Scenario 

Pressing the “Load Scenario” button in the program window in Figure 3.1 loads an existing 

scenario into the simulator. The program asks for the filename of the scenario you want to load 

(Figure 3.2). The default filename is “Scenario”, which contains the scenario from the previous 

simulation. The file that contains the scenario must be placed in the folder “Scenario”. 

 

  

Figure 3.2 ”Load Scenario” pop-up menu. 

 

The loaded scenario is shown in the Matlab command window and lists all the sensors and radars 

with relevant parameters (Figure 3.3). It is then possible to inspect the content of the scenario and 

determine if any radars or sensors should be removed or added. 
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Figure 3.3 Scenario listed in Matlab command window (only part of the scenario is visible in 

this example). 

3.1.2 Remove Radar 

Pressing the “Remove Radar” button in the program window in Figure 3.1 gives the possibility to 

remove one or more radars from the scenario. A pop-up menu appears that asks for the number of 

the radar that should be removed (Figure 3.4). Press the “Remove another” button to remove 

further radars. Press “Finished” when you are done with removing radars.  
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Figure 3.4 ”Remove Radar” pop-up menu. 

3.1.3 Remove Sensor 

Pressing the “Remove Sensor” button in the program window in Figure 3.1 gives  the possibility 

to remove one or more sensors from the scenario. A pop-up menu appears that asks for the 

number of the sensor that should be removed (Figure 3.5). Press the “Remove another” button to 

remove further sensors. Press “Finished” when you are done with removing sensors.  

 

  

Figure 3.5 ”Remove Sensor” pop-up menu. 

3.1.4 Add Radar 

Press the “Add Radar” button in the program window (Figure 3.1) to add radars to the scenario. A 

pop-up menu appears that asks for the characteristics of the radar (Figure 3.6). Start time and end 

time for the radar’s transmission must be given together with information about the following: 

 

1) Trajectory 

2) Rotation period 

3) Lobe pattern 

4) PRI 

5) Frequency 

6) Pulse width 
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which will be described in more detail in the subsections below. 

 

  

Figure 3.6 ”Add Radar” pop-up menu. 

3.1.4.1 Trajectory 

For the radar trajectory it is possible to choose between the following options: 

 

1) Stationary 

2) Straight line 

3) Arc 

4) From file 

 

The option “Stationary” simulates a stationary radar, and information about the radar’s  x- and y- 

positions must be given (Figure 3.7) 
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Figure 3.7 ”Trajectory” pop-up menu when the option “Stationary” is chosen. 

 

The option “Straight  line” simulates a radar that moves with constant speed along a straight line. 

Information about the radar’s x- and y- positions at the beginning of the movement (x0, y0), the 

speed (v), and the angle (α) of the radar’s trajectory relative to the x-axis must be given (Figure 

3.8). See also Section 2.1.1. 

 

  

Figure 3.8 ”Trajectory” pop-up menu when the option “Straight line” is chosen. 

 

The option “Arc” simulates a radar that moves on a circle arc with constant speed. The x- and y-

coordinates for the center of the circle (x0, y0) must be given together with the radius of curvature 

(r). Information about the radar’s speed (v) and the trajectory’s start angle (α0) relative to the x-

axis must also be given (Figure 3.9). See also Section 2.1.2. 
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Figure 3.9 ”Trajectory” pop-up menu when the option “Arc” is chosen. 

 

The option “From file” uses x- and y-coordinates (at given times) that are read from a text-file, to 

simulate the radar’s movement. The file must be placed in the folder “Inputfiles” prior to the 

simulations and the content of the file must be arranged as follows: Column #1 contains time 

stamps for the positions, column #2 contains the corresponding x-coordinates, and column #3 

contains the corresponding y-coordinates. The name of the file must be given in the 

corresponding pop-up menu (Figure 3.10). 

 

  

Figure 3.10 ”Trajectory” pop-up menu when the option “From file” is chosen. 

3.1.4.2 Rotation period 

For the radar rotation period it is possible to choose between the following options: 

 

1) Constant 

2) Sinus 
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The option “Constant” simulates a radar with constant rotation period. The rotation period (Trot) 

must be given together with the main lobe pointing angle (α0) relative the x-axis at the scenario 

start time t0 (Figure 3.11). See also Section 2.2.1.1. 

 

  

Figure 3.11 ”Rotation period” pop-up menu when the option “Constant” is chosen. 

 

The option “Sinus” simulates a radar with sinusoidal varying angular speed. The mean rotation 

period (Trot) must be given together with the main lobe pointing angle (α0) relative the x-axis at 

the scenario start time t0 (Figure 3.12). The amplitude (A) and angular frequency (s) of the 

variation relative to the constant component of the angular speed must also be given together with 

the phase (φ0) of the variation at the scenario start time. See also Section 2.2.1.2. 

 

  

Figure 3.12 ”Rotation period” pop-up menu when the option “Sinus” is chosen. 
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3.1.4.3 Lobe pattern 

For the radar lobe pattern it is possible to choose between the following options: 

1) Sinc-function 

2) From file 

 

The option “Sinc-function” uses a modified sinc-function to describe the radar lobe pattern, see 

Figure 2.6 in Section 2.2.2.1. Main lobe opening angle (θML), radar power (i.e., amplitude) at 

main lobe (PML), and radar power at back lobe (PBL) must be given (Figure 3.13). 

 

  

Figure 3.13 ”Lobe pattern” pop-up menu when the option “Sinc-function” is chosen. 

 

The option “From file” uses angles with corresponding lobe pattern amplitudes that are read from 

a text-file, to simulate the radar antenna’s lobe pattern. The file must be placed in the folder 

“Inputfiles” prior to the simulations and the content of the file must be arranged as follows: 

Column #1 contains the angles [deg] and column #2 contains the corresponding amplitudes [dB]. 

The amplitude values given in the file must be scaled so that the amplitude of the main lobe is 

equal to  0 dB. The name of the file together with the radar power at the main lobe (i.e., the 

strength of the radar) must be given in the corresponding pop-up menu (Figure 3.14). 

 

  

Figure 3.14 ”Lobe pattern” pop-up menu when the option “From File” is chosen. 
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3.1.4.4 PRI 

For the radar PRI it is possible to choose between the following options: 

 

1) Fixed 

2) Stagger 

3) Switched 

4) Jitter 

 

The option “Fixed” simulates a constant PRI for the radar, see Figure 2.7 in Section 2.2.3.1 for an 

example. The PRI must be given in the corresponding pop-up menu (Figure 3.15). 

 

  

Figure 3.15 ”PRI” pop-up menu when the option “Fixed” is chosen. 

 

The option “Stagger” simulates stagger PRI for the radar, i.e., that the radar uses several PRIs in a 

fixed pattern, see Figure 2.8 in Section 2.2.3.2 for an example. The PRIs must be given in the 

corresponding pop-up menu (Figure 3.16). 

 

  

Figure 3.16 ”PRI” pop-up menu when the option “Stagger” is chosen. 
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The option “Switched” simulates that the radar uses several PRIs in a fixed pattern, where each 

PRI may be repeated a certain number of times, see Figure 2.9 in Section 2.2.3.3 for an example. 

The PRIs must be given together with their corresponding number of repetitions (Figure 3.17). 

 

  

Figure 3.17 ”PRI” pop-up menu when the option “Switched” is chosen. 

 

The option “Jitter” simulates a radar with jittered PRI, see Figure 2.10 in Section 2.2.3.4 for an 

example. The PRI mean value and standard deviation (jitter) must be given in the corresponding 

pop-up menu (Figure 3.18). 

 

  

Figure 3.18 ”PRI” pop-up menu when the option “Jitter” is chosen. 

3.1.4.5 Frequency 

For the frequency the options are the same as for the PRI, see Section 3.1.4.4. 

3.1.4.6 Pulse width 

For the pulse width the options are the same as for the PRI, see Section 3.1.4.4. 
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3.1.5 Add Sensor 

Press the “Add Sensor” button in the program window (Figure 3.1) to add sensors to the scenario. 

A pop-up menu appears that asks for the characteristics of the sensor (Figure 3.19). The following 

information about the sensor must be given: 

 

1) Trajectory 

2) Saturation level 

3) Detection probability 

4) Amplitude error 

5) TOA error 

6) Frequency error 

7) Pulse width error 

8) AOA error 

 

Each of these parameters will be described in more detail in the subsections below. 

 

 

Figure 3.19 ”Add Sensor” pop-up menu. 

3.1.5.1 Trajectory 

For the sensor trajectory the options are the same as for the radar trajectory, see Section 3.1.4.1. 
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3.1.5.2 Saturation level 

Here the saturation level for the sensor is given. 

3.1.5.3 Detection probability 

The probability that a sensor detects a given pulse is assumed to be determined only by the pulse 

amplitude. To describe the detection probability, type pulse amplitude levels (descending order) 

together with corresponding detection probabilities in the detection probability pop-up menu 

(Figure 3.20). All pulses above a certain amplitude level (and at the same time below the previous 

higher amplitude level) will be detected with the corresponding detection probability. Pulses that 

are below the lowest given amplitude level are not detected. 

 

  

Figure 3.20 ”Detection probability” pop-up menu. 

3.1.5.4 Amplitude error 

Amplitude errors may be both systematic and arbitrary. The following options exist for 

systematic errors: 

 

1) Constant 

2) Linear 

3) Sinus 

 

The option “Constant” simulates a constant systematic error. The value for the constant error 

must be given (Figure 3.21). 
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Figure 3.21 ”Systematic amplitude error” pop-up menu when the option “Constant” is chosen. 

 

The option “Linear” simulates a systematic error that changes linearly with time (see also Section 

2.3.2). The error (∆P0) at the scenario start time (t0) must be given together with the rate of 

change (k) in the error (Figure 3.22). 

 

  

Figure 3.22 ”Systematic amplitude error” pop-up menu when the option “Linear” is chosen. 

 

The option “Sinus” simulates a systematic error that varies as a sinus with time (see also Section 

2.3.2). The error amplitude (A), frequency (f), and phase (φ0) at the scenario start time (t0)  must 

be given (Figure 3.23). 

 

  

Figure 3.23 ”Systematic amplitude error” pop-up menu when the option “Sinus” is chosen. 
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For the arbitrary amplitude error the following option can be chosen: 

 

1) Gaussian 

 

The option “Gaussian” simulates an arbitrary error that has Gaussian distribution. The standard 

deviation of the amplitude error must be given together with the percentage of pulses that has this 

error. It is possible to set several amplitude error standard deviation levels. The total percentage 

must add up to 100%. 

 

  

Figure 3.24 ”Arbitrary amplitude error” pop-up menu when the option “Gaussian” is chosen. 

3.1.5.5 TOA error 

The options for the TOA error are the same as for the amplitude error, see Section 3.1.5.4. 

3.1.5.6 Frequency error 

The options for the frequency error are the same as for the amplitude error, see Section 3.1.5.4. 

3.1.5.7 Pulse width error 

The options for the pulse width error are the same as for the amplitude error, see Section 3.1.5.4. 

3.1.5.8 AOA error 

The options for the AOA error are the same as for the amplitude error, see Section 3.1.5.4. 

 

In addition there is an extra option for the systematic AOA error:  

 

4) SinusAngle 
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This option simulates a systematic error with sinusoidal dependency on the direction that the 

sensor receives the signal from (see also Section 2.3.6). The sinusoidal AOA error amplitude (A) 

together with the number (f) of sinus periods per 360º and the reference angle AOAref  must be 

given (Figure 3.25). 

 

  

Figure 3.25 ”Systematic AOA error” pop-up menu when the option “SinusAngle” is chosen. 

3.1.6 Save Scenario 

Pressing the “Save Scenario” button in the program window in Figure 3.1 saves the scenario. The 

scenario is saved automatically to the file “Scenario” in the folder “Scenario”, which is used in 

the further simulations. In addition, a pop-up menu gives the possibility to save the scenario also 

under a different name for later use (Figure 3.26). This file is also placed in the folder “Scenario”. 

 

 

  

Figure 3.26 ”Save Scenario” pop-up menu. 
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3.2 Run simulations 

By pressing the “Run Simulations” button in the program window shown in Figure 3.1, the 

PDWs are created based on the input scenario. The following parameters are calculated1: 

 

1) Time of arrival (TOA) 

2) Amplitude 

3) Frequency 

4) Pulse width (PW) 

5) Angle of arrival (AOA) 

 

Each parameter is written to separate files for each sensor. The following filenames are used: 

 

 Sensor<n>_TOA 

 Sensor<n>_Amplitude 

 Sensor<n>_Frequency 

 Sensor<n>_PW 

 Sensor<n>_AOA 

 

The second part of the filename shows which parameter is recorded in the file, while the first part 

of the filename shows which sensor has recorded this parameter (replace <n> with sensor 

number; 1, 2, …etc). For instance, the file “Sensor1_TOA” contains all the TOAs recorded by 

sensor 1.  

 

In addition, information about which radar and which pulse the parameters belong to is recorded 

in two additional files: 

 

 Sensor<n>_RadarNo 

 Sensor<n>_PulseNo 

 

All parameters are listed in the same order (increasing TOA), so that the first element of 

“sensor1_TOA” corresponds to the first element of “sensor1_RadarNo”, etc. 

 

Radar and sensor positions are also calculated during the simulations and are recorded in the 

following files (x- and y-position separately): 
 

 Radar<n>_X 

 Radar<n>_Y 

 Sensor<n>_X 

 Sensor<n>_Y 

 

All files are stored in the folder “Outputfiles”. 

                                                           
1 See Section 2.3 for details on which factors are included in the calculation of each parameter. 
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3.3 Plot results 

Results from the simulations can be plotted by choosing between the following options in the 

program window shown in Figure 3.1: 

 

1) Plot Scenario 

2) Amplitude vs TOA 

3) PRI vs TOA 

4) Frequency vs TOA 

5) PW vs TOA 

6) AOA vs TOA 

 

The option “Plot Scenario” plots the positions of sensors and radars in the scenario, see Figure 4.1 

in Chapter 4 for an example. 

 

The option “Amplitude vs TOA” plots the amplitude of the received radar pulses as a function of 

TOA, see Figure 4.7 in Chapter 4 for an example. Pulses from different radars are marked by 

different colours, and each sensor is represented by a separate figure. 

 

The option “PRI vs TOA” plots the PRI of the received radar pulses as a function of TOA, see 

Figure 4.9 in Chapter 4 for an example.  

 

The option “Frequency vs TOA” plots the frequency of the received radar pulses as a function of 

TOA, see Figure 4.8 in Chapter 4 for an example.  

 

The option “PW vs TOA” plots the pulse width of the received radar pulses as a function of TOA, 

see Figure 4.10 in Chapter 4 for an example.  

 

The option “AOA vs TOA” plots the AOA of the received radar pulses as a function of TOA, see 

Figure 4.11 in Chapter 4 for an example.  
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4 Example 

We will in this chapter demonstrate the use of the PDW simulator and discuss the resulting 

output. Figure 4.1 shows the scenario to be used. The scenario consists of two stationary sensors 

and three radars, where radar 1 is stationary, radar 2 moves along a circle arc with a constant 

speed of 5 m/s, and radar 3 moves along a straight line with a constant speed of 8 m/s. 

 

  

Figure 4.1 Scenario example with two stationary sensors (s1 and s2) and three radars (r1, r2, 

and r3). 

 

Figure 4.2 and Figure 4.3 show the input parameters for sensors 1 and 2. We see that sensor 2 has 

somewhat better pulse detection probability and makes more precise measurements than sensor 1. 

 

Figure 4.4-Figure 4.6 show the input parameters for radars 1-3. Radar 2 is the most powerful of 

the three radars with a maximum pulse amplitude that lies 5 dB above that of radar 3 and 10 dB 

above that of radar 1. The radars have rotation periods between 2 s and 3 s and main lobe opening 

angles between 1º and 5º. Frequencies are in the range 9.2-9.6 GHz and pulse widths are in the 

range 1.2 μs - 1.8 μs. The radars use different PRI patterns with PRIs in the range 0.67-0.9 ms.  

 

Figure 4.7-Figure 4.11 show plots of the resulting output parameters from the PDW simulator, 

such as pulse amplitude, frequency, PRI, pulse width, and AOA. The plots are shown for a 

selected time interval of 1 s. 
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Figure 4.2 Input parameters for sensor 1. 

 

Figure 4.7a) and b) show the pulse amplitude as a function of TOA for pulses received by 

sensor 1 and sensor 2 respectively. The main lobe from each of the three radars passes sensor 2 at 

approximately the same time. Short after, the main lobe of radar 2 passes sensor 1 followed 

somewhat later by radar 3 and radar 1. The radars are differently placed relative to the sensors 

(thereby seeing a different angular distance between the sensors) and they have different rotation 

periods. Radar 2 has the shortest rotation period (2 s), followed by radar 1 (2.5 s) and radar 3 

(3 s). 

 

Even though radar 2 is the most powerful radar, we see that its maximum amplitude as detected 

by sensor 1 is lower than that of radar 3 which has the highest detected maximum amplitude of all 

three radars at sensor 1 (Figure 4.7a). The reason for this is that radar 2 is placed at a much longer 

distance from sensor 1 than radar 3. At sensor 2 the situation is opposite. Here the detected 

maximum amplitude of radar 3 is the lowest of all three radars. This is because radar 3 is placed 

at the longest distance from sensor 2. 
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Figure 4.3 Input parameters for sensor 2. 

 

Figure 4.7c) shows a selected time interval from Figure 4.7b) with pulses received by sensor 2 

during 100 ms between TOA=21.0 s and TOA=21.1 s. It is here possible to see single pulses, and 

we see that in the central parts of the three main lobes all pulses are detected. However, in the 

side lobes several pulses are missing. The amplitude measurements have arbitrary errors with 

standard deviation 0.1 dB for sensor 1 and 0.02 dB for sensor 2. 

 

Figure 4.8a) and b) show the pulse frequency as a function of TOA for pulses received by 

sensor 1 and sensor 2 respectively. We notice that more pulses are detected by sensor 1 than by 

sensor 2 for radar 3. This is because the signal from radar 3 is stronger at sensor 1 than at sensor 2 

(see Figure 4.7). For radars 1 and 2 the situation is opposite; more pulses are detected by sensor 2. 

In addition to receiving stronger signal from radars 1 and 2 than sensor 1, sensor 2 also has better 

ability to detect pulses (see Figure 4.2 and Figure 4.3). 
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Figure 4.4 Input parameters for radar 1. 

 

 

Figure 4.5 Input parameters for radar 2 

Figure 4.8c) shows a selected time interval from Figure 4.8b) with pulses received by sensor 2 

during 100 ms between TOA=21.0 s and TOA=21.1 s. We see that radars 2 and 3 have constant 

frequencies of 9.2 GHz and 9.6 GHz respectively, while radar 1 uses a switched frequency pattern 

of [6 x 9.40   6 x 9.42   6 x 9.44] GHz. The frequency measurements at sensor 2 have arbitrary 

errors with standard deviation 0.5 MHz. 
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Figure 4.6 Input parameters for radar 3. 

 

Figure 4.9 shows the PRI as a function of TOA for pulses received by sensors 1 and 2. We see 

that radar 2 has a constant PRI of 0.8 ms, while radar 3 has a jittered PRI of 0.9 ms with standard 

deviation 9 μs (1%). Radar 1 uses stagger PRI with PRIs of [0.67  0.68  0.69  0.70] ms. The PRI 

pattern for radar 1 appears clean and regular for the central part of the main lobe where all pulses 

are detected (between TOA=21.01 s and 21.06 s), see Figure 4.9c). For the side lobe (between 

TOA=21.08 s and 21.10 s) several pulses are missing, and the pattern becomes more disrupted. 

 

Figure 4.10 shows the pulse width as a function of TOA for pulses received by sensors 1 and 2. 

We see that radars 1 and 2 have constant pulse widths of 1.2 μs and 1.8 μs respectively. Radar 3 

uses a switched pulse width pattern with pulse widths of [8 x 1.42   8 x 1.44   8 x 1.46] μs. The 

pulse width measurements have arbitrary errors of 1 ns (both sensors). 

 

Figure 4.11 shows the angle of arrival as a function of TOA for pulses received by sensors 1 and 

2. We see that the AOA is approximately -31º, 10º, and -54º for radars 1, 2, and 3 respectively, as 

measured by sensor 2 (Figure 4.11b and c). At sensor 1 the corresponding numbers are 54º, 48º, 

and 2º (Figure 4.11a). The measurement errors have standard deviation 1º at sensor 1 and 0.1º at 

sensor 2. This difference is clearly visible in the figure, where the spread in the measurements are 

seen to be much larger for sensor 1 (Figure 4.11a). 

 

We see that for all parameters (amplitude, frequency, PRI, pulse width, AOA) the results look 

reasonably realistic. The PDW simulator could therefore be a valuable supplement to real data 

when developing and testing new pulse handling algorithms.
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           a) 

 

           b) 

 

           c) 

Figure 4.7 Amplitude as a function of TOA for pulses received during a time interval of 1 s by 

a) sensor 1 and b) sensor 2. In c) is shown a selected time interval from b) with 

pulses received by sensor 2 during 100 ms between TOA=21.0 s and TOA=21.1 s.  
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           a) 

 

           b) 

 

           c) 

Figure 4.8 Frequency as a function of TOA for pulses received during a time interval of 1 s by 

a) sensor 1 and b) sensor 2. In c) is shown a selected time interval from b) with 

pulses received by sensor 2 during 100 ms between TOA=21.0 s and TOA=21.1 s. 
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           a) 

 

           b) 

 

           c) 

Figure 4.9 PRI as a function of TOA for pulses received during a time interval of 1 s by a) 

sensor 1 and b) sensor 2. In c) is shown a selected time interval from b) with pulses 

received by sensor 2 during 100 ms between TOA=21.0 s and TOA=21.1 s. 
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           a) 

 

           b) 

 

           c) 

Figure 4.10 Pulse width as a function of TOA for pulses received during a time interval of 1 s by 

a) sensor 1 and b) sensor 2. In c) is shown a selected time interval from b) with 

pulses received by sensor 2 during 100 ms between TOA=21.0 s and TOA=21.1 s. 
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           a) 

 

           b) 

 

           c) 

Figure 4.11 AOA as a function of TOA for pulses received during a time interval of 1 s by 

a) sensor 1 and b) sensor 2. In c) is shown a selected time interval from b) with 

pulses received by sensor 2 during 100 ms between TOA=21.0 s and TOA=21.1 s. 
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5 An application – Testing LINE Deinterleaving 

The goal of this chapter is to show how data generated by the PDW-simulator can be used 

efficiently to test and optimize the LINE deinterleaver. Testing a deinterleaver is an excellent 

application of simulated PDW data. It is particularly applicable to deinterleaving because a model 

solution to the deinterleaving problem is directly available, which is a rare luxury. This gives 

great opportunities to optimize, test and compare algorithms, which is discussed in further detail 

in Chapter 2 of [1].  

5.1 The LINE deinterleaver 

LINE (LIttle Navigation Radar ESM) was an activity at FFI that culminated in the spring of 2012 

at Unified Vision 2012 (UV12), in which two experiment sensors were used to track ships by 

their navigation radars at Ørlandet. This was accomplished by combining the difference in the 

rotation phase of the radar (based on the strength of the signal received at each ESM-sensor) with 

the difference in the time of arrival (TDOA) of pulses at the two ESM-sensors. The two methods 

gave several geographical curves (arcs and half hyperbolas), such that the radar would be located 

at an intersection between the curves. 

 

The LINE deinterleaver (described in Appendix A of [1]) was developed, with the goal of 

deinterleaving data with the following constraints: 

 

- The work will be focused on navigation radars 

- Those radars tend to have a high degree of jitter 

- Those radars frequently do not have additional PRI patterns, like stagger, switched PRI or 

sliding PRI 

- The parameters available to the deinterleaver are TOA and amplitude. 

- There are relatively few radars present at once. 

 

A deinterleaver was developed, which takes as its input some number (typically 500) of 

consecutive pulses and then group together the pulses that came from the same radar and groups 

separately pulses from different radars. This was tested in a realistic scenario during UV12 with 

good results, measured by the utility and reliability that the deinterleaver provided to client 

programs. 

5.2 Clustering 

As discussed in [1], it is useful to consider deinterleaving in the more general context of 

clustering, and to develop generic evaluation criteria, rather than specialized criteria for 

deinterleaving. Here, the problem of clustering N different data points into some number of 

clusters is considered as a binary classification problem. Every data point may or may not be 

within the same cluster as each of the other data points. Hence, for every pair of data points, one 

may ask whether both points in that pair were grouped together or not, in the result. For each pair 
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of points, this has either a positive or negative answer. One may ask the same question about 

every pair of points with respect to the model solution. This puts every pair of points into one of 

the following four categories2: 

 

1. Correctly grouped together (True Positives, TP) 

- They are in the same result cluster and solution cluster 

2. Incorrectly grouped together (False Positives, FP) 

- They are in the same result cluster, but different solution clusters  

3. Incorrectly not grouped together (False Negatives, FN) 

- They are in different result clusters, but the same solution cluster 

4. Correctly not grouped together (True Negatives, TN) 

- They are in different result clusters and solutions clusters. 

 

Counting the number of pairs in each of the above categories, and associating these counts with 

the category labels, TP, FP, FN and TN, the following additional measures can be derived: 

 

 TPMax=TP+FN is the largest possible value of TP for a given problem. 

 TNMax=TN+FP is the largest possible value of TN for a given problem. 

 Sensitivity = TP / TPMax 

 Specificity = TN / TNMax 

 Accuracy = (TP + TN) / (TPMax + TNMax) 

 

It is worth noting that, for any clustering problem, there is a trivial solution, grouping all inputs 

together, giving a sensitivity of 1 (optimal) and another trivial solution, assigning a separate 

cluster to each data point, giving a specificity of 1. Thus one cannot measure clustering well with 

only one of these criteria. One needs to either consider both or combine the criteria in some way. 

Accuracy is one such combination, which makes the assumption that false positives/negatives are 

equally bad. In this chapter, specificity and sensitivity will be observed together. 

 

Counting all the pairs of points explicitly, is a tedious process that requires the algorithm to visit 

some point at least N(N-1)/2 times. Calculating TP, FP, FN and TN can be done much more 

efficiently, as described in [1]. 

5.3 Trying the LINE deinterleaver on simulated data 

An example scenario of PDW-simulations with three radars and two sensors, was given in 

Chapter 4, and the LINE deinterleaver will now be applied to a part of the input from that 

scenario. In particular, the data from sensor 1 will be studied. 67885 pulses were received at 

sensor 1. The value 220 was added to all amplitudes to make them all positive, as required by the 

Line PDW data type, in which amplitude was specified as an 8 bit unsigned integer. For similar 

reasons, the TOA values were scaled up by a factor of 10000, although these values have been 

                                                           
2 The rest of Section 5.2 consists mostly of direct quotations from [1]. 
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scaled back in the data plots. The deinterleaver works best on relatively small data sets at a time, 

so the focus will be on the first 5000 pulses, which are shown in Figure 5.1. 

 

 

Figure 5.1 5000 pulses of interleaved data from the PDW-simulator. 

 

 

Figure 5.2 A first deinterleaving result for the inputs shown in Figure 5.1. DTOA in the figure is 

the same as TOA.  
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When applying the LINE deinterleaving algorithm with some suitably chosen parameters, as 

described in Appendix A of [1], to the above data, it gives the output shown in Figure 5.2.  

 

Visual inspection of the tendencies in the Time-Amplitude part of the plot (top part of the figure) 

suggests that most pulses have indeed been grouped together correctly, although the dash of 

orange points should have probably been grouped with the green points. However, such visual 

inspection does not exploit the luxury of having a model solution, as provided by the PDW-

simulator. 

 

Measuring the specificity and sensitivity of the deinterleaving result in Figure 5.2 gives the 

approximate values 0.992 and 0.970, respectively, meaning that 99.2% of all pairs that should 

have been grouped together were grouped together and 97.0% of all pairs that should not have 

been grouped together were not grouped together. 

 

Having laid the ground work for assessing results, one can make things a little more interesting by 

modifying free algorithm parameters. One important parameter is the Relative Jitter Tolerance, J, 

which determines how much the TOA3 of consecutive pulses is allowed to vary within a group. 

Setting this parameter to 0 would require the TOA to be exactly the same throughout each 

group. Setting it to 1 would allow variation of 100%. The optimal value is somewhere between 

these two extremes, but may be different for each dataset. Figure 5.3 shows the specificity and  

 

 

Figure 5.3 Specificity and sensitivity, measured for deinterleaving with different J-values. The 

best values for optimizing (maximizing) both criteria seem to be in the approximate 

range 0.01-0.20. 

 

                                                           
3 TOA of two consecutive pulses is the positive difference between the TOA values of the two pulses. If 

the two pulses come from the same radar, then, provided all emitted pulses were detected by the sensor, 

TOA is the PRI of that radar at that point in time. Note that this is a different meaning of TOA, 

compared with that of the previous chapters, where TOA denoted the error in the measured TOA. The 

letter  is commonly used in mathematics to denote a value change or difference. Sticking with this 

convention in these two different contexts seems superior to introducing a new identifier just to make them 

look different. The current usage is exclusive to this chapter. 
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sensitivity, given J values uniformly spread between 0 and 1. Unsurprisingly, J=0 gives excellent 

specificity but terrible sensitivity. Since the TOA varies a little throughout the data, J=0 cannot 

group any data together. 

 

 

Figure 5.4 Looking closer at the interval J  (0.01, 0.20), although the differences are 

becoming rather small within most of the interval, there is definitely a close to global 

peak for both curves at a little more than 0.03. 

 

 

Figure 5.5 An optimal result, with specificity=0.992 and sensitivity=0.977 was found at 

J=0.031. The result also gave an improved visual result, as seen when comparing 

this figure to Figure 5.2. 
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The specificity drops pretty rapidly as the J is increased, whilst the sensitivity has a global peak 

within J  (0.01, 0.20). Figure 5.4 shows how the specificity and sensitivity vary in that interval. 

 

It seems that the peak in both specificity and sensitivity may be within the interval J  (0.028, 

0.034), thus the process is repeated for that interval, and J=0.031 gives a good compromise 

between specificity=0.992 and sensitivity=0.977. This also gives an improved visual result, 

shown in Figure 5.5, where the orange pulses from Figure 5.2 have been grouped with the green 

pulses, as they should. 

5.4 Generalizing to different data from the same PDW-simulation 

The model solution to the deinterleaving has helped optimize the parameter J, for these particular 

data. It is now interesting to see if the optimized parameter remains a good choice for different 

data from the same PDW-simulation. So far, the pulses considered have been pulses 0 through 

5000 in the data. Trying J=0.031 on pulses 5001 through 10000 gives specificity=0.996 and 

sensitivity=0.981, i.e. an even better result than for the first 5000 pulses. Trying the same for the 

next 5000 pulses, and so on (progressing 5000 pulses per iteration) gives sensitivities and 

specificities as given in Figure 5.6. The specificity does not vary much. It is mostly between 0.99 

and 1, once dropping to about 0.98. The sensitivity varies much more. In most of the cases (11 

out of 14) it is in the range (0.94, 1), but in the remaining cases, it is around 0.84 or (in one case) 

0.78. 

 

 

Figure 5.6 Specificity and sensitivity after deinterleaving different chunks of pulses from the 

current data set. 5000 pulses were processed, deinterleaved and evaluated at a time, 

before progressing to the next 5000 pulses, continuing this process for a total of 

50000 pulses. 
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It is worth taking a look at the cases that fail, to find out why so many points fail to get grouped 

together. Figure 5.7 shows the result from deinterleaving pulses 55000 through 60000, which 

gave the lowest sensitivity of 0.78. The figure shows that about 800 pulses (the purple ones) have 

been put in a separate group, even though they should clearly be grouped with the green pulses, 

judging from the continuity both in amplitude and TOA. 

 

 

Figure 5.7 Pulses 55000 through 60000 were deinterleaved with the lowest performance and a 

sensitivity of approximately 0.78. 

 

Now may be a good moment to reevaluate the performance measures. The deinterleaving error in 

Figure 5.7 (the purple pulses that should be green) seems a relatively small mistake, being simply 

a discontinuity in the cluster membership in two places along the time axis. If the purple pulses 

were distributed arbitrarily, then the sensitivity and specificity would remain exactly the same, 

even though this would probably lead to greater problems for a client program. Thus, depending 

on the application of the deinterleaving result, these performance measures may not always be 

appropriate. It will not be discussed further in this context, but is worth keeping in mind when 

evaluating clustering results. 



 

  
  

 

FFI-rapport 2013/00048 55   

 

5.5 Beyond this example 

So far, the deinterleaver has been applied to PDW simulator data in order to optimize one 

parameter with respect to a particular data set. An extension of this would be to optimize the same 

parameter with respect to different data sets, for example a set of representative datasets that are 

relevant in preparation for certain real scenarios. 

 

After that, one may change the focus to the other parameters of the deinterleaving algorithm. The 

LINE deinterleaving algorithm is described in [1], and so far the parameter J (Relative Jitter 

Tolerance) of this algorithm has been considered. One may do similar work with the parameters 

M (Missing Pulses Tolerance), S (Pulses Skipped) and N (Sequence Length), or a combination of 

these. Much of the work has also been manual so far, in part because no effort has been made 

towards combining the two quality measures. A simple way to combine specificity and sensitivity 

is to optimize the sum, or a weighted sum. Alternatively, one could optimize the accuracy. 

Having decided which measure to use, one can start automating searches for optimal parameter 

combinations. 

6 Summary 

We have developed a first version of a Pulse Descriptor Word (PDW) simulator with a user-

friendly interface in Matlab. The simulator produces PDWs with information about time of arrival 

(TOA), amplitude, frequency, pulse width, and angle of arrival (AOA), based on information 

about scene geometry and radar and sensor properties. 

 

Applying the PDW simulator to a test scenario has shown that the simulator produces quite 

realistic output. The PDW simulator was also used to test a deinterleaving algorithm – the LINE 

Deinterleaver. The benefits of controlling the input scenario, as well as knowing the absolute 

truth about which pulse belongs to which radar, was clearly seen for this type of application. We 

conclude that the PDW simulator could be a valuable additional tool when developing and testing 

pulse handling algorithms. 

 

The current version of the PDW simulator software simulates rotating radars in 2 dimensions on a 

flat Earth. Future versions of the software could be expanded to operate in 3 dimensions and to 

use an elliptical Earth. Obstacles could be added to the scenario, and integration of the software 

with 3D maps could open up for the possibility to create realistic geographic scenarios. Non-

rotating radars and additional parameters and measurements such as crystal frequency and 

Doppler could also be included. The user interface could be upgraded to further facilitate the use 

of the PDW simulator. 
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Appendix A PDW simulator algorithm 

The algorithm for the PDW simulator can be summarized as follows: 

 

Procedure GeneratePDWs: 

1) For each radar #m: 

ProcessRadar(#m) 

 

2) Arrange the pulses received (from several radars) at each sensor, in order according to 

their time of arrival. 

 

3) Write the following pulse information to file (in the form of separate tables for each 

parameter and each sensor, see Section 3.2): 

a. TOA 

b. Amplitude 

c. Frequency 

d. Pulse width 

e. AOA 

f. Radar number 

g. Pulse number 

 

4) Write radar and sensor positions to file. 

 

Procedure ProcessRadar(#m): 

1) Generate table with pulse emitting times for radar #m, based on the given PRI type and 

values (Section 2.2.3). 

 

2) Generate tables with x- and y- positions for radar #m at pulse emitting times, based on the 

given information about the radar movement (Section 2.1). 

 

3) Generate table with angles between the radar main lobe pointing direction and the x-axis 

at pulse emitting times for radar #m, based on the given information about the rotation 

period and start pointing direction for the main lobe (Section 2.2.1). 

 

4) For each sensor #n: 

ProcessSensor(#n) 
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Procedure ProcessSensor(#n): 

1) Generate tables with x- and y- positions for sensor #n at pulse emitting times, based on 

the given information about the sensor’s movements (Section 2.1). 

 

2) Generate table with angles between the radar-sensor line and the x-axis at pulse emitting 

times for radar #m and sensor #n. 

 

3) Generate table with angles between the radar-sensor line and the radar main lobe at pulse 

emitting times for radar #m and sensor #n. 

 

4) Generate table with the distance between radar #m and sensor #n at pulse emitting times. 

 

5) Generate table with the amplitude of the received pulses at sensor #n for all pulses from 

radar #m (Equation (2.15)). 

  

6) Determine which pulses from radar #m that are detected at sensor #n, based on the given 

detection probabilities for the sensor (Section 2.3.1). 

 

7) Determine the time of arrival (TOA) for pulses from radar #m at sensor #n 

(Equation (2.19)). 

 

8) Determine the frequency for pulses from radar #m at sensor #n (Equation (2.21)). 

 

9) Determine the pulse width for pulses from radar #m at sensor #n (Equation (2.22)). 

 

10) Determine the angle of arrival (AOA) for pulses from radar #m at sensor #n (Equation 

(2.23)). 
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