Show simple item record

dc.contributorGamborg, Mariusen_GB
dc.contributorLillevold, Frodeen_GB
dc.date.accessioned2018-10-08T13:29:13Z
dc.date.available2018-10-08T13:29:13Z
dc.date.issued2005
dc.identifier
dc.identifier.isbn82-464-0936-0en_GB
dc.identifier.other2005/01053
dc.identifier.urihttp://hdl.handle.net/20.500.12242/1399
dc.description.abstractIn this report we give an overwiev of methods for front-end processing of speech signals for automatic speech recognition (ASR) that are described in the litterature. The most common representation of speech in this context seems to be mel-frequency cepstral coeficient (MFCC) with delta- and double-delta coefficients, usually combined with cepstral mean normalization (CMN). Other representations include perceptual linear prediction (PLP) and linear prediction cepstral coefficients (LPCC).en_GB
dc.language.isonoben_GB
dc.titleSignalrepresentasjoner for automatisk talegjenkjenningen_GB
dc.subject.keywordTalegjenkjenningen_GB
dc.source.issue2005/01053en_GB
dc.source.pagenumber31en_GB


Files in this item

This item appears in the following Collection(s)

Show simple item record