Signalrepresentasjoner for automatisk talegjenkjenning
dc.contributor | Gamborg, Marius | en_GB |
dc.contributor | Lillevold, Frode | en_GB |
dc.date.accessioned | 2018-10-08T13:29:13Z | |
dc.date.available | 2018-10-08T13:29:13Z | |
dc.date.issued | 2005 | |
dc.identifier | ||
dc.identifier.isbn | 82-464-0936-0 | en_GB |
dc.identifier.other | 2005/01053 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12242/1399 | |
dc.description.abstract | In this report we give an overwiev of methods for front-end processing of speech signals for automatic speech recognition (ASR) that are described in the litterature. The most common representation of speech in this context seems to be mel-frequency cepstral coeficient (MFCC) with delta- and double-delta coefficients, usually combined with cepstral mean normalization (CMN). Other representations include perceptual linear prediction (PLP) and linear prediction cepstral coefficients (LPCC). | en_GB |
dc.language.iso | nob | en_GB |
dc.title | Signalrepresentasjoner for automatisk talegjenkjenning | en_GB |
dc.subject.keyword | Talegjenkjenning | en_GB |
dc.source.issue | 2005/01053 | en_GB |
dc.source.pagenumber | 31 | en_GB |