Show simple item record

dc.contributor.authorEngebråten, Sondre Andreasen_GB
dc.contributor.authorMoen, Jonasen_GB
dc.contributor.authorYakimenko, Olegen_GB
dc.contributor.authorGlette, Kyrreen_GB
dc.date.accessioned2018-08-29T12:33:10Z
dc.date.accessioned2018-10-30T09:59:10Z
dc.date.available2018-08-29T12:33:10Z
dc.date.available2018-10-30T09:59:10Z
dc.date.issued2018
dc.identifier.citationEngebråten SA, Moen J, Yakimenko, Glette K. Evolving a Repertoire of Controllers for a Multi-function Swarm. Lecture Notes in Computer Science. 2018;10784:734-749en_GB
dc.identifier.urihttp://hdl.handle.net/123456789/68759
dc.identifier.urihttp://hdl.handle.net/20.500.12242/1807
dc.descriptionEngebråten, Sondre Andreas; Moen, Hans Jonas Fossum; Yakimenko, Oleg; Glette, Kyrre. Evolving a Repertoire of Controllers for a Multi-function Swarm. Lecture Notes in Computer Science 2018 ;Volum 10784. s. 734-749en_GB
dc.description.abstractAutomated design of swarm behaviors with a top-down approach is a challenging research question that has not yet been fully addressed in the robotic swarm literature. This paper seeks to explore the possibility of using an evolutionary algorithm to evolve, rather than hand code, a wide repertoire of behavior primitives enabling more effective control of a large group or swarm of unmanned systems. We use the MAP-elites algorithm to generate a repertoire of controllers with varying abilities and behaviors allowing the swarm to adapt to user-defined preferences by selection of a new appropriate controller. To test the proposed method we examine two example applications: perimeter surveillance and network creation. Perimeter surveillance require agents to explore, while network creation requires them to disperse without losing connectivity. These are distinct application that have drastically different requirements on agent behavior, and are a good benchmark for our swarm controller optimization framework. We show a performance comparison between a simple weighted controller and a parametric controller. Evolving controllers allows for specifying desired behaviors top-down, in terms of objectives to solve, rather than bottom-up.en_GB
dc.language.isoenen_GB
dc.subjectTermSet Emneord::Kunstig intelligens
dc.subjectTermSet Emneord::Roboter
dc.subjectTermSet Emneord::Svermteknologi
dc.titleEvolving a Repertoire of Controllers for a Multi-function Swarmen_GB
dc.title.alternativeEvolving a Repertoire of Controllers for a Multi-function Swarmen_GB
dc.typeArticleen_GB
dc.date.updated2018-08-29T12:33:10Z
dc.identifier.cristinID1597078
dc.identifier.cristinID1597078
dc.identifier.doi10.1007/978-3-319-77538-8_49
dc.source.issn0302-9743
dc.source.issn1611-3349
dc.type.documentJournal article
dc.relation.journalLecture Notes in Computer Science


Files in this item

This item appears in the following Collection(s)

Show simple item record