Show simple item record

dc.contributor.authorGusland, Danielen_GB
dc.contributor.authorRolfsjord, Sigmund Johannes Ljosvollen_GB
dc.contributor.authorTorvik, Børgeen_GB
dc.date.accessioned2021-02-09T08:30:29Z
dc.date.accessioned2021-03-03T07:49:16Z
dc.date.available2021-02-09T08:30:29Z
dc.date.available2021-03-03T07:49:16Z
dc.date.issued2020
dc.identifier.citationGusland D, Rolfsjord S, Torvik B. Deep temporal detection - A machine learning approach to multiple-dwell target detection. IEEE International Conference on Radar. 2020en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/2840
dc.descriptionGusland, Daniel; Rolfsjord, Sigmund Johannes Ljosvoll; Torvik, Børge. Deep temporal detection - A machine learning approach to multiple-dwell target detection. IEEE International Conference on Radar 2020en_GB
dc.description.abstractDetecting small targets, such as an Unmanned Aerial Vehicle (UAV) in high clutter and non-homogeneous environments is challenging for a radar system. Traditional Constant False Alarm Rate (CFAR) detectors have suboptimal performance in many scenarios. In this paper, we attempt a new approach to radar detection, based on machine learning, to increase the P D while retaining a low F FA . We propose two approaches, using a Convolutional Neural Network (CNN) on the range-Doppler images and stacking multiple range-Doppler images as layers, called the Temporal CNN detector. The models are trained and tested solely on measured radar data by using the estimated position and velocity from a collaborative target UAV. It is shown that training a model based solely on measured data is achievable and performance metrics calculated from the testing data shows that both models outperform the Cell-Averaging Constant False Alarm Rate (CA-CFAR) by having higher P D with the same P FA . The current test results indicate that the temporal CNN is able to increase the detection distance close to 30%, while retaining the same P FA as the CA-CFAR.en_GB
dc.language.isoenen_GB
dc.relation.urihttps://ieeexplore.ieee.org/document/9114828
dc.subjectRadaren_GB
dc.subjectMaskinlæringen_GB
dc.subjectUbemannede luftfarkoster (UAV)en_GB
dc.subjectDyp læringen_GB
dc.titleDeep temporal detection - A machine learning approach to multiple-dwell target detectionen_GB
dc.typeArticleen_GB
dc.date.updated2021-02-09T08:30:29Z
dc.identifier.cristinID1857856
dc.identifier.doi10.1109/RADAR42522.2020.9114828
dc.source.issn1097-5764
dc.source.issn2640-7736
dc.type.documentJournal article
dc.relation.journalIEEE International Conference on Radar


Files in this item

This item appears in the following Collection(s)

Show simple item record