Show simple item record

dc.contributor.authorHolen, Martinen_GB
dc.contributor.authorRuud, Else-Line Maleneen_GB
dc.contributor.authorWarakagoda, Narada Dilpen_GB
dc.contributor.authorGranmo, Ole-Christofferen_GB
dc.contributor.authorEngelstad, Paal E.en_GB
dc.contributor.authorKnausgård, Kristian Murien_GB
dc.date.accessioned2023-02-09T10:15:28Z
dc.date.accessioned2023-02-10T08:27:12Z
dc.date.available2023-02-09T10:15:28Z
dc.date.available2023-02-10T08:27:12Z
dc.date.issued2022-06-10
dc.identifier.citationHolen M, Ruud EM, Warakagoda ND, Granmo O, Engelstad P.E., Knausgård KM: Towards Using Reinforcement Learning for Autonomous Docking of Unmanned Surface Vehicles. In: Iliadis L, Jayne C, Tefas A, Pimenidis E. Engineering Applications of Neural Networks. EANN 2022. Communications in Computer and Information Science, 2022. Springer Natureen_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/3152
dc.descriptionHolen, Martin; Ruud, Else-Line Malene; Warakagoda, Narada Dilp; Granmo, Ole-Christoffer; Engelstad, Paal E.; Knausgård, Kristian Muri. Towards Using Reinforcement Learning for Autonomous Docking of Unmanned Surface Vehicles. I: Engineering Applications of Neural Networks. EANN 2022. Communications in Computer and Information Science. Springer Nature 2022 ISBN 978-3-031-08223-8en_GB
dc.description.abstractProviding full autonomy to Unmanned Surface Vehicles (USV) is a challenging goal to achieve. Autonomous docking is a subtask that is particularly difficult. The vessel has to distinguish between obstacles and the dock, and the obstacles can be either static or moving. This paper developed a simulator using Reinforcement Learning (RL) to approach the problem. We studied several scenarios for the task of docking a USV in a simulator environment. The scenarios were defined with different sensor inputs and start-stop procedures but a simple shared reward function. The results show that the system solved the task when the IMU (Inertial Measurement Unit) and GNSS (Global Navigation Satellite System) sensors were used to estimate the state, despite the simplicity of the reward function.en_GB
dc.language.isoenen_GB
dc.subjectMaskinlæringen_GB
dc.subjectDyp læringen_GB
dc.subjectAutonomien_GB
dc.subjectAutonome overflatefarkosteren_GB
dc.titleTowards Using Reinforcement Learning for Autonomous Docking of Unmanned Surface Vehiclesen_GB
dc.date.updated2023-02-09T10:15:28Z
dc.identifier.cristinID2116935
dc.identifier.doi10.1007/978-3-031-08223-8_38
dc.source.isbn978-3-031-08223-8
dc.source.issn1865-0929
dc.source.issn1865-0937
dc.type.documentChapter


Files in this item

This item appears in the following Collection(s)

Show simple item record