Show simple item record

dc.contributor.authorJohansen, Iver
dc.date.accessioned2017-10-02T11:13:17Z
dc.date.accessioned2017-10-03T11:35:56Z
dc.date.available2017-10-02T11:13:17Z
dc.date.available2017-10-03T11:35:56Z
dc.date.issued2017
dc.identifier.citationJohansen IJ. Tiered Modelling - A Solution to Hyper-Coherent Morphological Models?. Acta Morphologica Generalis. 2017;6(1)en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/660
dc.identifier.urihttps://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/660
dc.descriptionJohansen, Iver. Tiered Modelling - A Solution to Hyper-Coherent Morphological Models?. Acta Morphologica Generalis 2017 ;Volum 6.(1) s. -en_GB
dc.description.abstractMorphological models that comprise few constraints between parameter values are considered hyper-coherent. A high degree of coherence in a model can be a problem if it results in a large and unwieldy solution space. This paper explores a possible methodological approach to solve the problem of coherence in morphological models. The case in point is a study of Human Built Operational Environments – sometimes called megacities. Instead of analyzing the total morphological field in one comprehensive process, the analysis was split into two tiers. In the first tier the morphological field was broken down into three distinct analytical bins, and analyzed separately. In the second tier the analytic products were integrated into an aggregate morphological field that was highly constrained, thus producing a smaller and more orderly solution space.en_GB
dc.language.isoenen_GB
dc.relation.urihttp://www.amg.swemorph.com/pdf/amg-6-1-2017.pdf
dc.subjectMorfologi
dc.titleTiered Modelling - A Solution to Hyper-Coherent Morphological Models?en_GB
dc.typeArticleen_GB
dc.date.updated2017-10-02T11:13:17Z
dc.identifier.cristinID1499934
dc.identifier.cristinID1499934
dc.source.issn2001-2241
dc.type.documentJournal article
dc.relation.journalActa Morphologica Generalis


Files in this item

This item appears in the following Collection(s)

Show simple item record