Show simple item record

dc.contributor.authorNyhavn, Ragnhild
dc.contributor.authorMoen, Hans Jonas Fossum
dc.contributor.authorFarsund, Øystein
dc.contributor.authorRustad, Gunnar
dc.date.accessioned2017-11-13T12:04:44Z
dc.date.accessioned2017-11-14T10:27:37Z
dc.date.available2017-11-13T12:04:44Z
dc.date.available2017-11-14T10:27:37Z
dc.date.issued2011
dc.identifier.citationNyhavn R, Moen HJB, Farsund Ø, Rustad G. Optimal classification of standoff bioaerosol measurements using evolutionary algorithms. Proceedings of SPIE, the International Society for Optical Engineering. 2011;8018en_GB
dc.identifier.urihttp://hdl.handle.net/20.500.12242/802
dc.identifier.urihttps://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/802
dc.descriptionNyhavn, Ragnhild; Moen, Hans Jonas Fossum; Farsund, Øystein; Rustad, Gunnar. Optimal classification of standoff bioaerosol measurements using evolutionary algorithms. Proceedings of SPIE, the International Society for Optical Engineering 2011 ;Volum 8018. s. -en_GB
dc.description.abstractEarly warning systems based on standoff detection of biological aerosols require real-time signal processing of a large quantity of high-dimensional data, challenging the systems efficiency in terms of both computational complexity and classification accuracy. Hence, optimal feature selection is essential in forming a stable and efficient classification system. This involves finding optimal signal processing parameters, characteristic spectral frequencies and other data transformations in large magnitude variable space, stating the need for an efficient and smart search algorithm. Evolutionary algorithms are population-based optimization methods inspired by Darwinian evolutionary theory. These methods focus on application of selection, mutation and recombination on a population of competing solutions and optimize this set by evolving the population of solutions for each generation. We have employed genetic algorithms in the search for optimal feature selection and signal processing parameters for classification of biological agents. The experimental data were achieved with a spectrally resolved lidar based on ultraviolet laser induced fluorescence, and included several releases of 5 common simulants. The genetic algorithm outperform benchmark methods involving analytic, sequential and random methods like support vector machines, Fisher's linear discriminant and principal component analysis, with significantly improved classification accuracy compared to the best classical method.en_GB
dc.language.isoenen_GB
dc.subjectTermSet Emneord::Bioaerosoler
dc.subjectTermSet Emneord::Målinger
dc.subjectTermSet Emneord::Mønstergjenkjenning
dc.titleOptimal classification of standoff bioaerosol measurements using evolutionary algorithmsen_GB
dc.typeArticleen_GB
dc.date.updated2017-11-13T12:04:44Z
dc.identifier.cristinID870852
dc.identifier.cristinID870852
dc.identifier.doi10.1117/12.883919
dc.source.issn0277-786X
dc.source.issn1996-756X
dc.type.documentJournal article
dc.relation.journalProceedings of SPIE, the International Society for Optical Engineering


Files in this item

This item appears in the following Collection(s)

Show simple item record